srcContext
stringlengths
44
89.6k
theoremStatement
stringlengths
28
895
theoremName
stringlengths
3
58
fileCreated
stringclasses
15 values
theoremCreated
stringclasses
50 values
file
stringclasses
23 values
positionMetadata
dict
dependencyMetadata
dict
proofMetadata
dict
split
stringclasses
4 values
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/
lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1
HTPI.mod_succ_lt
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 7, "tokenPositionInFile": 96, "theoremPositionInFile": 0 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n have h : n + 1 > 0 := Nat.succ_pos n\n show a % (n + 1) < n + 1 from Nat.mod_lt a h\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 98 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/
theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b)
HTPI.dvd_mod_of_dvd_a_b
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 117, "tokenPositionInFile": 3037, "theoremPositionInFile": 25 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n set q : Nat := a / b\n have h3 : b * q + a % b = a := Nat.div_add_mod a b\n obtain (j : Nat) (h4 : a = d * j) from h1\n obtain (k : Nat) (h5 : b = d * k) from h2\n define --Goal : ∃ (c : Nat), a % b = d * c\n apply Exists.intro (j - k * q)\n show a % b = d * (j - k * q) from\n calc a % b\n _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm\n _ = a - b * q := by rw [h3]\n _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc]\n _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm\n done", "proofType": "tactic", "proofLengthLines": 13, "proofLengthTokens": 538 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done
theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a
HTPI.dvd_a_of_dvd_b_mod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 133, "tokenPositionInFile": 3662, "theoremPositionInFile": 26 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": false, "proof": ":= sorry", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 8 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7
lemma gcd_base (a : Nat) : gcd a 0 = a
HTPI.gcd_base
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 138, "tokenPositionInFile": 3791, "theoremPositionInFile": 27 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl
lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b)
HTPI.gcd_nonzero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 140, "tokenPositionInFile": 3841, "theoremPositionInFile": 28 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h\n rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1))\n rfl\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 158 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done
lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b
HTPI.mod_nonzero_lt
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 147, "tokenPositionInFile": 4081, "theoremPositionInFile": 29 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n have h1 : b > 0 := Nat.pos_of_ne_zero h\n show a % b < b from Nat.mod_lt a h1\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 92 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done
lemma dvd_self (n : Nat) : n ∣ n
HTPI.dvd_self
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 152, "tokenPositionInFile": 4240, "theoremPositionInFile": 30 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n apply Exists.intro 1\n ring\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 42 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done
theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b
HTPI.gcd_dvd
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 157, "tokenPositionInFile": 4317, "theoremPositionInFile": 31 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n by_strong_induc\n fix b : Nat\n assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1\n fix a : Nat\n by_cases h1 : b = 0\n · -- Case 1. h1 : b = 0\n rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0\n apply And.intro (dvd_self a)\n define\n apply Exists.intro 0\n rfl\n done\n · -- Case 2. h1 : b ≠ 0\n rewrite [gcd_nonzero a h1]\n --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b\n have h2 : a % b < b := mod_nonzero_lt a h1\n have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) :=\n ih (a % b) h2 b\n apply And.intro _ h3.left\n show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right\n done\n done", "proofType": "tactic", "proofLengthLines": 22, "proofLengthTokens": 670 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done
theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a
HTPI.gcd_dvd_left
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 181, "tokenPositionInFile": 5052, "theoremPositionInFile": 32 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= (gcd_dvd b a).left", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 21 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left
theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b
HTPI.gcd_dvd_right
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 183, "tokenPositionInFile": 5124, "theoremPositionInFile": 33 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= (gcd_dvd b a).right", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 22 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right
lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1
HTPI.gcd_c1_base
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 185, "tokenPositionInFile": 5198, "theoremPositionInFile": 34 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl
lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b)
HTPI.gcd_c1_nonzero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 187, "tokenPositionInFile": 5254, "theoremPositionInFile": 35 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h\n rewrite [h2]\n rfl\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 105 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done
lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0
HTPI.gcd_c2_base
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 194, "tokenPositionInFile": 5450, "theoremPositionInFile": 36 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl
lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b)
HTPI.gcd_c2_nonzero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 196, "tokenPositionInFile": 5506, "theoremPositionInFile": 37 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h\n rewrite [h2]\n rfl\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 105 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done
theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b)
HTPI.gcd_lin_comb
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 203, "tokenPositionInFile": 5734, "theoremPositionInFile": 38 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n by_strong_induc\n fix b : Nat\n assume ih : ∀ b_1 < b, ∀ (a : Nat),\n (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1)\n fix a : Nat\n by_cases h1 : b = 0\n · -- Case 1. h1 : b = 0\n rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base]\n --Goal : 1 * ↑a + 0 * ↑0 = ↑a\n ring\n done\n · -- Case 2. h1 : b ≠ 0\n rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1]\n --Goal : gcd_c2 b (a % b) * ↑a +\n -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b =\n -- ↑(gcd b (a % b))\n set r : Nat := a % b\n set q : Nat := a / b\n set s : Int := gcd_c1 b r\n set t : Int := gcd_c2 b r\n --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r)\n have h2 : r < b := mod_nonzero_lt a h1\n have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b\n have h4 : b * q + r = a := Nat.div_add_mod a b\n rewrite [←h3, ←h4]\n rewrite [Nat.cast_add, Nat.cast_mul]\n --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r\n ring\n done\n done", "proofType": "tactic", "proofLengthLines": 30, "proofLengthTokens": 1012 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161
theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b
HTPI.Theorem_7_1_6
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 240, "tokenPositionInFile": 6972, "theoremPositionInFile": 39 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b)\n set s : Int := gcd_c1 a b\n set t : Int := gcd_c2 a b\n have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a\n rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b\n obtain (j : Nat) (h4 : a = d * j) from h1\n obtain (k : Nat) (h5 : b = d * k) from h2\n rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul]\n --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k)\n define\n apply Exists.intro (s * ↑j + t * ↑k)\n ring\n done", "proofType": "tactic", "proofLengthLines": 13, "proofLengthTokens": 494 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/
theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c
HTPI.dvd_trans
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 257, "tokenPositionInFile": 7566, "theoremPositionInFile": 40 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n define at h1; define at h2; define\n obtain (m : Nat) (h3 : b = a * m) from h1\n obtain (n : Nat) (h4 : c = b * n) from h2\n rewrite [h3, mul_assoc] at h4\n apply Exists.intro (m * n)\n show c = a * (m * n) from h4\n done", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 229 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done
lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n
HTPI.exists_prime_factor
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 266, "tokenPositionInFile": 7863, "theoremPositionInFile": 41 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n by_strong_induc\n fix n : Nat\n assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1\n assume h1 : 2 ≤ n\n by_cases h2 : prime n\n · -- Case 1. h2 : prime n\n apply Exists.intro n\n define --Goal : prime n ∧ n ∣ n\n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n)\n done\n · -- Case 2. h2 : ¬prime n\n define at h2\n --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n)\n demorgan at h2\n disj_syll h2 h1\n obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2\n obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3\n have h5 : 2 ≤ a := by\n by_contra h6\n have h7 : a ≤ 1 := by linarith\n have h8 : n ≤ b :=\n calc n\n _ = a * b := h4.left.symm\n _ ≤ 1 * b := by rel [h7]\n _ = b := by ring\n linarith --n ≤ b contradicts b < n\n done\n have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5\n obtain (p : Nat) (h7 : prime_factor p a) from h6\n apply Exists.intro p\n define --Goal : prime p ∧ p ∣ n\n define at h7 --h7 : prime p ∧ p ∣ a\n apply And.intro h7.left\n have h8 : a ∣ n := by\n apply Exists.intro b\n show n = a * b from (h4.left).symm\n done\n show p ∣ n from dvd_trans h7.right h8\n done\n done", "proofType": "tactic", "proofLengthLines": 40, "proofLengthTokens": 1310 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done
lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q
HTPI.exists_least_prime_factor
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 309, "tokenPositionInFile": 9258, "theoremPositionInFile": 42 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n set S : Set Nat := {p : Nat | prime_factor p n}\n have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h\n show ∃ (p : Nat), prime_factor p n ∧\n ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2\n done", "proofType": "tactic", "proofLengthLines": 5, "proofLengthTokens": 226 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done
lemma all_prime_nil : all_prime []
HTPI.all_prime_nil
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 318, "tokenPositionInFile": 9620, "theoremPositionInFile": 43 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define --Goal : ∀ p ∈ [], prime p\n fix p : Nat\n contrapos --Goal : ¬prime p → p ∉ []\n assume h1 : ¬prime p\n show p ∉ [] from List.not_mem_nil p\n done", "proofType": "tactic", "proofLengthLines": 6, "proofLengthTokens": 167 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done
lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L
HTPI.all_prime_cons
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 326, "tokenPositionInFile": 9824, "theoremPositionInFile": 44 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply Iff.intro\n · -- (→)\n assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L\n define at h1 --h1 : ∀ p ∈ n :: L, prime p\n apply And.intro (h1 n (List.mem_cons_self n L))\n define --Goal : ∀ p ∈ L, prime p\n fix p : Nat\n assume h2 : p ∈ L\n show prime p from h1 p (List.mem_cons_of_mem n h2)\n done\n · -- (←)\n assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l)\n define : all_prime L at h1\n define\n fix p : Nat\n assume h2 : p ∈ n :: L\n rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L\n by_cases on h2\n · -- Case 1. h2 : p = n\n rewrite [h2]\n show prime n from h1.left\n done\n · -- Case 2. h2 : p ∈ L\n show prime p from h1.right p h2\n done\n done\n done", "proofType": "tactic", "proofLengthLines": 27, "proofLengthTokens": 768 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done
lemma nondec_nil : nondec []
HTPI.nondec_nil
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 356, "tokenPositionInFile": 10689, "theoremPositionInFile": 45 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define --Goal : True\n trivial --trivial proves some obviously true statements, such as True\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 108 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done
lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L
HTPI.nondec_cons
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 361, "tokenPositionInFile": 10828, "theoremPositionInFile": 46 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl
lemma prod_nil : prod [] = 1
HTPI.prod_nil
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 364, "tokenPositionInFile": 10934, "theoremPositionInFile": 47 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl
lemma prod_cons : prod (n :: L) = n * (prod L)
HTPI.prod_cons
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 366, "tokenPositionInFile": 10974, "theoremPositionInFile": 48 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl
lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n
HTPI.exists_cons_of_length_eq_succ
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 368, "tokenPositionInFile": 11032, "theoremPositionInFile": 49 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n have h1 : ¬l.length = 0 := by linarith\n rewrite [List.length_eq_zero] at h1\n obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from\n List.exists_cons_of_ne_nil h1\n obtain (L : List A) (h3 : l = a :: L) from h2\n apply Exists.intro a\n apply Exists.intro L\n apply And.intro h3\n have h4 : (a :: L).length = L.length + 1 := List.length_cons a L\n rewrite [←h3, h] at h4\n show L.length = n from (Nat.add_right_cancel h4).symm\n done", "proofType": "tactic", "proofLengthLines": 12, "proofLengthTokens": 444 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done
lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l
HTPI.list_elt_dvd_prod_by_length
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 384, "tokenPositionInFile": 11631, "theoremPositionInFile": 50 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n by_induc\n · --Base Case\n fix l : List Nat\n assume h1 : l.length = 0\n rewrite [List.length_eq_zero] at h1 --h1 : l = []\n rewrite [h1] --Goal : a ∈ [] → a ∣ prod []\n contrapos\n assume h2 : ¬a ∣ prod []\n show a ∉ [] from List.not_mem_nil a\n done\n · -- Induction Step\n fix n : Nat\n assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l\n fix l : List Nat\n assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l\n obtain (b : Nat) (h2 : ∃ (L : List Nat),\n l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1\n obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2\n have h4 : a ∈ L → a ∣ prod L := ih L h3.right\n assume h5 : a ∈ l\n rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L\n rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L\n by_cases on h5\n · -- Case 1. h5 : a = b\n apply Exists.intro (prod L)\n rewrite [h5]\n rfl\n done\n · -- Case 2. h5 : a ∈ L\n have h6 : a ∣ prod L := h4 h5\n have h7 : prod L ∣ b * prod L := by\n apply Exists.intro b\n ring\n done\n show a ∣ b * prod L from dvd_trans h6 h7\n done\n done\n done", "proofType": "tactic", "proofLengthLines": 38, "proofLengthTokens": 1254 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done
lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l
HTPI.list_elt_dvd_prod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 425, "tokenPositionInFile": 13002, "theoremPositionInFile": 51 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n set n : Nat := l.length\n have h1 : l.length = n := by rfl\n show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 135 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done
lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l
HTPI.exists_prime_factorization
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 432, "tokenPositionInFile": 13217, "theoremPositionInFile": 52 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n by_strong_induc\n fix n : Nat\n assume ih : ∀ n_1 < n, n_1 ≥ 1 →\n ∃ (l : List Nat), prime_factorization n_1 l\n assume h1 : n ≥ 1\n by_cases h2 : n = 1\n · -- Case 1. h2 : n = 1\n apply Exists.intro []\n define\n apply And.intro\n · -- Proof of nondec_prime_list []\n define\n show all_prime [] ∧ nondec [] from\n And.intro all_prime_nil nondec_nil\n done\n · -- Proof of prod [] = n\n rewrite [prod_nil, h2]\n rfl\n done\n done\n · -- Case 2. h2 : n ≠ 1\n have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2\n obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat),\n prime_factor q n → p ≤ q) from exists_least_prime_factor h3\n have p_prime_factor : prime_factor p n := h4.left\n define at p_prime_factor\n have p_prime : prime p := p_prime_factor.left\n have p_dvd_n : p ∣ n := p_prime_factor.right\n have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right\n obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n\n have h5 : m ≠ 0 := by\n contradict h1 with h6\n have h7 : n = 0 :=\n calc n\n _ = p * m := n_eq_pm\n _ = p * 0 := by rw [h6]\n _ = 0 := by ring\n rewrite [h7]\n decide\n done\n have m_pos : 0 < m := Nat.pos_of_ne_zero h5\n have m_lt_n : m < n := by\n define at p_prime\n show m < n from\n calc m\n _ < m + m := by linarith\n _ = 2 * m := by ring\n _ ≤ p * m := by rel [p_prime.left]\n _ = n := n_eq_pm.symm\n done\n obtain (L : List Nat) (h6 : prime_factorization m L)\n from ih m m_lt_n m_pos\n define at h6\n have ndpl_L : nondec_prime_list L := h6.left\n define at ndpl_L\n apply Exists.intro (p :: L)\n define\n apply And.intro\n · -- Proof of nondec_prime_list (p :: L)\n define\n apply And.intro\n · -- Proof of all_prime (p :: L)\n rewrite [all_prime_cons]\n show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left\n done\n · -- Proof of nondec (p :: L)\n rewrite [nondec_cons]\n apply And.intro _ ndpl_L.right\n fix q : Nat\n assume q_in_L : q ∈ L\n have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L\n rewrite [h6.right] at h7 --h7 : q ∣ m\n have h8 : m ∣ n := by\n apply Exists.intro p\n rewrite [n_eq_pm]\n ring\n done\n have q_dvd_n : q ∣ n := dvd_trans h7 h8\n have ap_L : all_prime L := ndpl_L.left\n define at ap_L\n have q_prime_factor : prime_factor q n :=\n And.intro (ap_L q q_in_L) q_dvd_n\n show p ≤ q from p_least q q_prime_factor\n done\n done\n · -- Proof of prod (p :: L) = n\n rewrite [prod_cons, h6.right, n_eq_pm]\n rfl\n done\n done\n done", "proofType": "tactic", "proofLengthLines": 91, "proofLengthTokens": 2759 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done
theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b
HTPI.Theorem_7_2_2
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 526, "tokenPositionInFile": 16080, "theoremPositionInFile": 53 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b\n define at h1; define at h2; define\n obtain (j : Nat) (h3 : a * b = c * j) from h1\n set s : Int := gcd_c1 a c\n set t : Int := gcd_c2 a c\n have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a\n rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int)\n apply Exists.intro (s * ↑j + t * ↑b)\n show ↑b = ↑c * (s * ↑j + t * ↑b) from\n calc ↑b\n _ = (1 : Int) * ↑b := (one_mul _).symm\n _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4]\n _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring\n _ = s * (↑c * ↑j) + t * ↑c * ↑b := by\n rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j]\n _ = ↑c * (s * ↑j + t * ↑b) := by ring\n done", "proofType": "tactic", "proofLengthLines": 17, "proofLengthTokens": 717 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done
lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b
HTPI.le_nonzero_prod_left
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 546, "tokenPositionInFile": 16885, "theoremPositionInFile": 54 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n have h1 : b ≠ 0 := by\n contradict h with h1\n rewrite [h1]\n ring\n done\n have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1\n show a ≤ a * b from\n calc a\n = a * 1 := (mul_one a).symm\n _ ≤ a * b := by rel [h2]\n done", "proofType": "tactic", "proofLengthLines": 11, "proofLengthTokens": 239 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done
lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b
HTPI.le_nonzero_prod_right
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 559, "tokenPositionInFile": 17193, "theoremPositionInFile": 55 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [mul_comm]\n rewrite [mul_comm] at h\n show b ≤ b * a from le_nonzero_prod_left h\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 104 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done
lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p
HTPI.dvd_prime
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 565, "tokenPositionInFile": 17367, "theoremPositionInFile": 56 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": false, "proof": ":= sorry", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 8 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry
lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p
HTPI.rel_prime_of_prime_not_dvd
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 568, "tokenPositionInFile": 17453, "theoremPositionInFile": 57 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h3 : gcd a p ∣ a := gcd_dvd_left a p\n have h4 : gcd a p ∣ p := gcd_dvd_right a p\n have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4\n have h6 : gcd a p ≠ p := by\n contradict h2 with h6\n rewrite [h6] at h3\n show p ∣ a from h3\n done\n disj_syll h5 h6\n show rel_prime a p from h5\n done", "proofType": "tactic", "proofLengthLines": 11, "proofLengthTokens": 316 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done
theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b
HTPI.Theorem_7_2_3
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 582, "tokenPositionInFile": 17865, "theoremPositionInFile": 58 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n or_right with h3\n have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3\n show p ∣ b from Theorem_7_2_2 h2 h4\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 131 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done
lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1
HTPI.ge_one_of_prod_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 589, "tokenPositionInFile": 18086, "theoremPositionInFile": 59 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= by\n have h1 : a ≠ 0 := by\n by_contra h1\n rewrite [h1] at h\n contradict h\n linarith\n done\n show a ≥ 1 from Nat.pos_of_ne_zero h1\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 154 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done
lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1
HTPI.eq_one_of_prod_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 599, "tokenPositionInFile": 18303, "theoremPositionInFile": 60 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : a ≥ 1 := ge_one_of_prod_one h\n have h2 : a * b ≠ 0 := by linarith\n have h3 : a ≤ a * b := le_nonzero_prod_left h2\n rewrite [h] at h3\n show a = 1 from Nat.le_antisymm h3 h1\n done", "proofType": "tactic", "proofLengthLines": 6, "proofLengthTokens": 200 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done
lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1
HTPI.eq_one_of_dvd_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 607, "tokenPositionInFile": 18566, "theoremPositionInFile": 61 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (j : Nat) (h1 : 1 = n * j) from h\n show n = 1 from eq_one_of_prod_one h1.symm\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 100 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done
lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1
HTPI.prime_not_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 612, "tokenPositionInFile": 18722, "theoremPositionInFile": 62 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define at h\n linarith\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 37 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done
theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a
HTPI.Theorem_7_2_4
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 617, "tokenPositionInFile": 18813, "theoremPositionInFile": 63 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply List.rec\n · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a\n rewrite [prod_nil]\n assume h2 : p ∣ 1\n show ∃ a ∈ [], p ∣ a from\n absurd (eq_one_of_dvd_one h2) (prime_not_one h1)\n done\n · -- Induction Step\n fix b : Nat\n fix L : List Nat\n assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a\n --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a\n assume h2 : p ∣ prod (b :: L)\n rewrite [prod_cons] at h2\n have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2\n by_cases on h3\n · -- Case 1. h3 : p ∣ b\n apply Exists.intro b\n show b ∈ b :: L ∧ p ∣ b from\n And.intro (List.mem_cons_self b L) h3\n done\n · -- Case 2. h3 : p ∣ prod L\n obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3\n apply Exists.intro a\n show a ∈ b :: L ∧ p ∣ a from\n And.intro (List.mem_cons_of_mem b h4.left) h4.right\n done\n done\n done", "proofType": "tactic", "proofLengthLines": 29, "proofLengthTokens": 898 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done
lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l
HTPI.prime_in_list
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 649, "tokenPositionInFile": 19812, "theoremPositionInFile": 64 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3\n define at h2\n have h5 : prime a := h2 a h4.left\n have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right\n disj_syll h6 (prime_not_one h1)\n rewrite [h6]\n show a ∈ l from h4.left\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 256 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done
lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q
HTPI.first_le_first
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 660, "tokenPositionInFile": 20179, "theoremPositionInFile": 65 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define at h1; define at h2\n have h4 : q ∣ prod (p :: l) := by\n define\n apply Exists.intro (prod m)\n rewrite [←prod_cons]\n show prod (p :: l) = prod (q :: m) from h3\n done\n have h5 : all_prime (q :: m) := h2.left\n rewrite [all_prime_cons] at h5\n have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4\n have h7 : nondec (p :: l) := h1.right\n rewrite [nondec_cons] at h7\n rewrite [List.mem_cons] at h6\n by_cases on h6\n · -- Case 1. h6 : q = p\n linarith\n done\n · -- Case 2. h6 : q ∈ l\n have h8 : ∀ m ∈ l, p ≤ m := h7.left\n show p ≤ q from h8 q h6\n done\n done", "proofType": "tactic", "proofLengthLines": 22, "proofLengthTokens": 605 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done
lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l
HTPI.nondec_prime_list_tail
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 686, "tokenPositionInFile": 20957, "theoremPositionInFile": 66 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define at h\n define\n rewrite [all_prime_cons, nondec_cons] at h\n show all_prime l ∧ nondec l from And.intro h.left.right h.right.right\n done", "proofType": "tactic", "proofLengthLines": 5, "proofLengthTokens": 152 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done
lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1
HTPI.cons_prod_not_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 694, "tokenPositionInFile": 21224, "theoremPositionInFile": 67 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define at h\n have h1 : all_prime (p :: l) := h.left\n rewrite [all_prime_cons] at h1\n rewrite [prod_cons]\n by_contra h2\n show False from (prime_not_one h1.left) (eq_one_of_prod_one h2)\n done", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 203 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done
lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1
HTPI.list_nil_iff_prod_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 704, "tokenPositionInFile": 21535, "theoremPositionInFile": 68 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply Iff.intro\n · -- (→)\n assume h1 : l = []\n rewrite [h1]\n show prod [] = 1 from prod_nil\n done\n · -- (←)\n contrapos\n assume h1 : ¬l = []\n obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from\n List.exists_cons_of_ne_nil h1\n obtain (L : List Nat) (h3 : l = p :: L) from h2\n rewrite [h3] at h\n rewrite [h3]\n show ¬prod (p :: L) = 1 from cons_prod_not_one h\n done\n done", "proofType": "tactic", "proofLengthLines": 17, "proofLengthTokens": 425 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done
lemma prime_pos {p : Nat} (h : prime p) : p > 0
HTPI.prime_pos
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 724, "tokenPositionInFile": 22057, "theoremPositionInFile": 69 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define at h\n linarith\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 37 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done
theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2
HTPI.Theorem_7_2_5
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 729, "tokenPositionInFile": 22144, "theoremPositionInFile": 70 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply List.rec\n · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] →\n -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2\n fix l2 : List Nat\n assume h1 : nondec_prime_list []\n assume h2 : nondec_prime_list l2\n assume h3 : prod [] = prod l2\n rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3\n show [] = l2 from h3.symm\n done\n · -- Induction Step\n fix p : Nat\n fix L1 : List Nat\n assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 →\n nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2\n -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) →\n -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2\n fix l2 : List Nat\n assume h1 : nondec_prime_list (p :: L1)\n assume h2 : nondec_prime_list l2\n assume h3 : prod (p :: L1) = prod l2\n have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1\n rewrite [h3, ←list_nil_iff_prod_one h2] at h4\n obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from\n List.exists_cons_of_ne_nil h4\n obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5\n rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2)\n rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2)\n have h7 : p ≤ q := first_le_first h1 h2 h3\n have h8 : q ≤ p := first_le_first h2 h1 h3.symm\n have h9 : p = q := by linarith\n rewrite [h9, prod_cons, prod_cons] at h3\n --h3 : q * prod L1 = q * prod L2\n have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1\n have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2\n define at h2\n have h12 : all_prime (q :: L2) := h2.left\n rewrite [all_prime_cons] at h12\n have h13 : q > 0 := prime_pos h12.left\n have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3\n have h15 : L1 = L2 := ih L2 h10 h11 h14\n rewrite [h6, h9, h15]\n rfl\n done\n done", "proofType": "tactic", "proofLengthLines": 45, "proofLengthTokens": 1875 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done
theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l
HTPI.fund_thm_arith
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 778, "tokenPositionInFile": 24149, "theoremPositionInFile": 71 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n exists_unique\n · -- Existence\n show ∃ (l : List Nat), prime_factorization n l from\n exists_prime_factorization n h\n done\n · -- Uniqueness\n fix l1 : List Nat; fix l2 : List Nat\n assume h1 : prime_factorization n l1\n assume h2 : prime_factorization n l2\n define at h1; define at h2\n have h3 : prod l1 = n := h1.right\n rewrite [←h2.right] at h3\n show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3\n done\n done", "proofType": "tactic", "proofLengthLines": 15, "proofLengthTokens": 457 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/
theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m)
HTPI.congr_refl
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 797, "tokenPositionInFile": 24720, "theoremPositionInFile": 72 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n fix a : Int\n define --Goal : ∃ (c : Int), a - a = ↑m * c\n apply Exists.intro 0\n ring\n done", "proofType": "tactic", "proofLengthLines": 5, "proofLengthTokens": 117 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done
theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m)
HTPI.congr_symm
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 804, "tokenPositionInFile": 24897, "theoremPositionInFile": 73 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n fix a : Int; fix b : Int\n assume h1 : a ≡ b (MOD m)\n define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c\n define --Goal : ∃ (c : Int), b - a = ↑m * c\n obtain (c : Int) (h2 : a - b = m * c) from h1\n apply Exists.intro (-c)\n show b - a = m * (-c) from\n calc b - a\n _ = -(a - b) := by ring\n _ = -(m * c) := by rw [h2]\n _ = m * (-c) := by ring\n done", "proofType": "tactic", "proofLengthLines": 12, "proofLengthTokens": 412 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done
theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m)
HTPI.congr_trans
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 819, "tokenPositionInFile": 25391, "theoremPositionInFile": 74 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": false, "proof": ":= sorry", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 8 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/
lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val
HTPI.cc_eq_iff_val_eq
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 823, "tokenPositionInFile": 25551, "theoremPositionInFile": 75 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":= Fin.ext_iff", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 14 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff
lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1)
HTPI.val_nat_eq_mod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 826, "tokenPositionInFile": 25649, "theoremPositionInFile": 76 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl
lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0
HTPI.val_zero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 829, "tokenPositionInFile": 25731, "theoremPositionInFile": 77 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl
theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m
HTPI.cc_rep
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 831, "tokenPositionInFile": 25791, "theoremPositionInFile": 78 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":=\n match m with\n | 0 => by\n apply Exists.intro X\n rfl\n done\n | n + 1 => by\n apply Exists.intro ↑(X.val)\n have h1 : X.val < n + 1 := Fin.prop X\n rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1]\n rfl\n done", "proofType": "term", "proofLengthLines": 11, "proofLengthTokens": 266 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done
theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m
HTPI.add_class
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 844, "tokenPositionInFile": 26122, "theoremPositionInFile": 79 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= (Int.cast_add a b).symm", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 26 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm
theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m
HTPI.mul_class
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 847, "tokenPositionInFile": 26222, "theoremPositionInFile": 80 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= (Int.cast_mul a b).symm", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 26 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm
lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m
HTPI.cc_eq_iff_sub_zero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 850, "tokenPositionInFile": 26322, "theoremPositionInFile": 81 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply Iff.intro\n · -- (→)\n assume h1 : [a]_m = [b]_m\n have h2 : a - b = a + (-b) := by ring\n have h3 : b + (-b) = 0 := by ring\n show [a - b]_m = [0]_m from\n calc [a - b]_m\n _ = [a + (-b)]_m := by rw [h2]\n _ = [a]_m + [-b]_m := by rw [add_class]\n _ = [b]_m + [-b]_m := by rw [h1]\n _ = [b + -b]_m := by rw [add_class]\n _ = [0]_m := by rw [h3]\n done\n · -- (←)\n assume h1 : [a - b]_m = [0]_m\n have h2 : b + (a - b) = a := by ring\n have h3 : b + 0 = b := by ring\n show [a]_m = [b]_m from\n calc [a]_m\n _ = [b + (a - b)]_m := by rw [h2]\n _ = [b]_m + [a - b]_m := by rw [add_class]\n _ = [b]_m + [0]_m := by rw [h1]\n _ = [b + 0]_m := by rw [add_class]\n _ = [b]_m := by rw [h3]\n done\n done", "proofType": "tactic", "proofLengthLines": 26, "proofLengthTokens": 800 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done
lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m
HTPI.cc_neg_zero_of_cc_zero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 879, "tokenPositionInFile": 27211, "theoremPositionInFile": 82 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n assume h1 : [a]_m = [0]_m\n have h2 : 0 + (-a) = -a := by ring\n have h3 : a + (-a) = 0 := by ring\n show [-a]_m = [0]_m from\n calc [-a]_m\n _ = [0 + (-a)]_m := by rw [h2]\n _ = [0]_m + [-a]_m := by rw [add_class]\n _ = [a]_m + [-a]_m := by rw [h1]\n _ = [a + (-a)]_m := by rw [add_class]\n _ = [0]_m := by rw [h3]\n done", "proofType": "tactic", "proofLengthLines": 11, "proofLengthTokens": 352 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done
lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m
HTPI.cc_neg_zero_iff_cc_zero
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 893, "tokenPositionInFile": 27651, "theoremPositionInFile": 83 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply Iff.intro _ (cc_neg_zero_of_cc_zero m a)\n assume h1 : [-a]_m = [0]_m\n have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1\n have h3 : -(-a) = a := by ring\n rewrite [h3] at h2\n show [a]_m = [0]_m from h2\n done", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 239 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done
lemma cc_mod_0 (a : Int) : [a]_0 = a
HTPI.cc_mod_0
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 903, "tokenPositionInFile": 27979, "theoremPositionInFile": 84 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl
lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k
HTPI.cc_nat_zero_iff_dvd
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 905, "tokenPositionInFile": 28027, "theoremPositionInFile": 85 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":=\n match m with\n | 0 => by\n have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl\n rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj]\n apply Iff.intro\n · -- (→)\n assume h1 : k = 0\n rewrite [h1]\n show 0 ∣ 0 from dvd_self 0\n done\n · -- (←)\n assume h1 : 0 ∣ k\n obtain (c : Nat) (h2 : k = 0 * c) from h1\n rewrite [h2]\n ring\n done\n done\n | n + 1 => by\n rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero]\n show k % (n + 1) = 0 ↔ n + 1 ∣ k from\n (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm\n done", "proofType": "term", "proofLengthLines": 22, "proofLengthTokens": 601 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done
lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a
HTPI.cc_zero_iff_dvd
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 929, "tokenPositionInFile": 28692, "theoremPositionInFile": 86 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a\n by_cases on h1\n · -- Case 1. h1: a = ↑k\n rewrite [h1, Int.natCast_dvd_natCast]\n show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k\n done\n · -- Case 2. h1: a = -↑k\n rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast]\n show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k\n done\n done", "proofType": "tactic", "proofLengthLines": 11, "proofLengthTokens": 412 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done
theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m)
HTPI.cc_eq_iff_congr
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 942, "tokenPositionInFile": 29173, "theoremPositionInFile": 87 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":=\n calc [a]_m = [b]_m\n _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b\n _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b)\n _ ↔ a ≡ b (MOD m) := by rfl", "proofType": "term", "proofLengthLines": 4, "proofLengthTokens": 159 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/
lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m
HTPI.mod_nonneg
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 950, "tokenPositionInFile": 29474, "theoremPositionInFile": 88 }
{ "inFilePremises": false, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m)\n show 0 ≤ a % m from Int.emod_nonneg a h1\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 122 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done
lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m
HTPI.mod_lt
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 955, "tokenPositionInFile": 29658, "theoremPositionInFile": 89 }
{ "inFilePremises": false, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m)\n have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1\n show a % m < m from Int.emod_lt_of_pos a h2\n done", "proofType": "tactic", "proofLengthLines": 4, "proofLengthTokens": 164 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done
lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m)
HTPI.congr_mod_mod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 961, "tokenPositionInFile": 29880, "theoremPositionInFile": 90 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define\n have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m\n apply Exists.intro (a / m)\n show a - a % m = m * (a / m) from\n calc a - (a % m)\n _ = m * (a / m) + a % m - a % m := by rw [h1]\n _ = m * (a / m) := by ring\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 253 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done
lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m)
HTPI.mod_cmpl_res
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 971, "tokenPositionInFile": 30195, "theoremPositionInFile": 91 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":=\n And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a))", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 76 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a))
theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m)
HTPI.Theorem_7_3_1
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 975, "tokenPositionInFile": 30371, "theoremPositionInFile": 92 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n exists_unique\n · -- Existence\n apply Exists.intro (a % m)\n show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from\n mod_cmpl_res m a\n done\n · -- Uniqueness\n fix r1 : Int; fix r2 : Int\n assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m)\n assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m)\n have h3 : r1 ≡ r2 (MOD m) :=\n congr_trans (congr_symm h1.right.right) h2.right.right\n obtain (d : Int) (h4 : r1 - r2 = m * d) from h3\n have h5 : r1 - r2 < m * 1 := by linarith\n have h6 : m * (-1) < r1 - r2 := by linarith\n rewrite [h4] at h5 --h5 : m * d < m * 1\n rewrite [h4] at h6 --h6 : m * -1 < m * d\n have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m\n have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7\n have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7\n have h10 : d = 0 := by linarith\n show r1 = r2 from\n calc r1\n _ = r1 - r2 + r2 := by ring\n _ = m * 0 + r2 := by rw [h4, h10]\n _ = r2 := by ring\n done\n done", "proofType": "tactic", "proofLengthLines": 28, "proofLengthTokens": 1001 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done
lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m
HTPI.cc_eq_mod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1006, "tokenPositionInFile": 31477, "theoremPositionInFile": 93 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":=\n (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a)", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 58 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a)
theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X
HTPI.Theorem_7_3_6_1
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1009, "tokenPositionInFile": 31593, "theoremPositionInFile": 94 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (a : Int) (h1 : X = [a]_m) from cc_rep X\n obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y\n rewrite [h1, h2]\n have h3 : a + b = b + a := by ring\n show [a]_m + [b]_m = [b]_m + [a]_m from\n calc [a]_m + [b]_m\n _ = [a + b]_m := add_class m a b\n _ = [b + a]_m := by rw [h3]\n _ = [b]_m + [a]_m := (add_class m b a).symm\n done", "proofType": "tactic", "proofLengthLines": 10, "proofLengthTokens": 356 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done
theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X
HTPI.Theorem_7_3_6_7
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1021, "tokenPositionInFile": 32016, "theoremPositionInFile": 95 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n obtain (a : Int) (h1 : X = [a]_m) from cc_rep X\n rewrite [h1]\n have h2 : a * 1 = a := by ring\n show [a]_m * [1]_m = [a]_m from\n calc [a]_m * [1]_m\n _ = [a * 1]_m := mul_class m a 1\n _ = [a]_m := by rw [h2]\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 236 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done
theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1
HTPI.Exercise_7_2_6
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1031, "tokenPositionInFile": 32317, "theoremPositionInFile": 96 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": false, "proof": ":= sorry", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 8 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry
lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m
HTPI.gcd_c2_inv
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1034, "tokenPositionInFile": 32417, "theoremPositionInFile": 97 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n set s : Int := gcd_c1 m a\n have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m\n define at h1\n rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1\n rewrite [mul_class, cc_eq_iff_congr]\n define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c\n apply Exists.intro (-s)\n show a * (gcd_c2 m a) - 1 = m * (-s) from\n calc a * (gcd_c2 m a) - 1\n _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring\n _ = 1 + m * (-s) - 1 := by rw [h2]\n _ = m * (-s) := by ring\n done", "proofType": "tactic", "proofLengthLines": 13, "proofLengthTokens": 529 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done
theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a
HTPI.Theorem_7_3_7
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1050, "tokenPositionInFile": 33035, "theoremPositionInFile": 98 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply Iff.intro\n · -- (→)\n assume h1 : invertible [a]_m\n define at h1\n obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1\n obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y\n rewrite [h3, mul_class, cc_eq_iff_congr] at h2\n define at h2\n obtain (c : Int) (h4 : a * b - 1 = m * c) from h2\n rewrite [Exercise_7_2_6]\n --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1\n apply Exists.intro (-c)\n apply Exists.intro b\n show (-c) * m + b * a = 1 from\n calc (-c) * m + b * a\n _ = (-c) * m + (a * b - 1) + 1 := by ring\n _ = (-c) * m + m * c + 1 := by rw [h4]\n _ = 1 := by ring\n done\n · -- (←)\n assume h1 : rel_prime m a\n define\n show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from\n Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1)\n done\n done", "proofType": "tactic", "proofLengthLines": 26, "proofLengthTokens": 807 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler
lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0
HTPI.num_rp_below_base
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1083, "tokenPositionInFile": 33961, "theoremPositionInFile": 99 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl
lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1
HTPI.num_rp_below_step_rp
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1086, "tokenPositionInFile": 34033, "theoremPositionInFile": 100 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : num_rp_below m (j + 1) =\n if gcd m j = 1 then (num_rp_below m j) + 1\n else num_rp_below m j := by rfl\n define at h --h : gcd m j = 1\n rewrite [if_pos h] at h1\n --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1\n show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 327 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done
lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j
HTPI.num_rp_below_step_not_rp
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1097, "tokenPositionInFile": 34475, "theoremPositionInFile": 101 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : num_rp_below m (j +1) =\n if gcd m j = 1 then (num_rp_below m j) + 1\n else num_rp_below m j := by rfl\n define at h --h : ¬gcd m j = 1\n rewrite [if_neg h] at h1\n --h1 : num_rp_below m (j + 1) = num_rp_below m j\n show num_rp_below m (j + 1) = num_rp_below m j from h1\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 319 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done
lemma phi_def (m : Nat) : phi m = num_rp_below m m
HTPI.phi_def
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1108, "tokenPositionInFile": 34908, "theoremPositionInFile": 102 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4
lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y
HTPI.prod_inv_iff_inv
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1112, "tokenPositionInFile": 34999, "theoremPositionInFile": 103 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n apply Iff.intro\n · -- (→)\n assume h2 : invertible (X * Y)\n obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2\n apply Exists.intro (X * Z)\n rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z\n ring --Note that ring can do algebra in ZMod m\n done\n · -- (←)\n assume h2 : invertible Y\n obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1\n obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2\n apply Exists.intro (Xi * Yi)\n show (X * Y) * (Xi * Yi) = [1]_m from\n calc X * Y * (Xi * Yi)\n _ = (X * Xi) * (Y * Yi) := by ring\n _ = [1]_m * [1]_m := by rw [h3, h4]\n _ = [1]_m := Theorem_7_3_6_7 [1]_m\n done\n done", "proofType": "tactic", "proofLengthLines": 20, "proofLengthTokens": 673 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done
lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m
HTPI.F_rp_def
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1136, "tokenPositionInFile": 35797, "theoremPositionInFile": 104 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl\n define at h --h : gcd m i = 1\n rewrite [if_pos h] at h1\n show F m i = [i]_m from h1\n done", "proofType": "tactic", "proofLengthLines": 5, "proofLengthTokens": 172 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done
lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m
HTPI.F_not_rp_def
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1144, "tokenPositionInFile": 36038, "theoremPositionInFile": 105 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl\n define at h\n rewrite [h1, if_neg h]\n rfl\n done", "proofType": "tactic", "proofLengthLines": 5, "proofLengthTokens": 124 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done
lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m
HTPI.prod_seq_base
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1152, "tokenPositionInFile": 36236, "theoremPositionInFile": 106 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl
lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n)
HTPI.prod_seq_step
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1155, "tokenPositionInFile": 36335, "theoremPositionInFile": 107 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl
lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n
HTPI.prod_seq_zero_step
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1159, "tokenPositionInFile": 36467, "theoremPositionInFile": 108 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [prod_seq_step, zero_add]\n rfl\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 54 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done
lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k
HTPI.prod_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1166, "tokenPositionInFile": 36641, "theoremPositionInFile": 109 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7]\n rfl\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 96 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done
lemma G_def (m a i : Nat) : G m a i = (a * i) % m
HTPI.G_def
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1172, "tokenPositionInFile": 36820, "theoremPositionInFile": 110 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by rfl", "proofType": "tactic", "proofLengthLines": 0, "proofLengthTokens": 9 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl
lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m
HTPI.cc_G
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1174, "tokenPositionInFile": 36881, "theoremPositionInFile": 111 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":=\n calc [G m a i]_m\n _ = [(a * i) % m]_m := by rfl\n _ = [a * i]_m := (cc_eq_mod m (a * i)).symm\n _ = [a]_m * [i]_m := (mul_class m a i).symm", "proofType": "term", "proofLengthLines": 4, "proofLengthTokens": 151 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm
lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i
HTPI.G_rp_iff
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1180, "tokenPositionInFile": 37089, "theoremPositionInFile": 112 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1\n show rel_prime m (G m a i) ↔ rel_prime m i from\n calc rel_prime m (G m a i)\n _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm\n _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G]\n _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m)\n _ ↔ rel_prime m i := Theorem_7_3_7 m i\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 377 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done
lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i
HTPI.FG_rp
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1191, "tokenPositionInFile": 37570, "theoremPositionInFile": 113 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2\n show F m (G m a i) = [a]_m * F m i from\n calc F m (G m a i)\n _ = [G m a i]_m := F_rp_def h3\n _ = [a]_m * [i]_m := cc_G m a i\n _ = [a]_m * F m i := by rw [F_rp_def h2]\n done", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 259 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done
lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m
HTPI.FG_not_rp
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1201, "tokenPositionInFile": 37935, "theoremPositionInFile": 114 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [←G_rp_iff h1 i] at h2\n show F m (G m a i) = [1]_m from F_not_rp_def h2\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 95 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done
lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m)
HTPI.FG_prod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1207, "tokenPositionInFile": 38133, "theoremPositionInFile": 115 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n by_induc\n · -- Base Case\n show prod_seq 0 0 ((F m) ∘ (G m a)) =\n [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from\n calc prod_seq 0 0 ((F m) ∘ (G m a))\n _ = [1]_m := prod_seq_base _ _\n _ = [a]_m ^ 0 * [1]_m := by ring\n _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by\n rw [num_rp_below_base, prod_seq_base]\n done\n · -- Induction Step\n fix k : Nat\n assume ih : prod_seq k 0 ((F m) ∘ (G m a)) =\n [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m)\n by_cases h2 : rel_prime m k\n · -- Case 1. h2 : rel_prime m k\n show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) =\n [a]_m ^ (num_rp_below m (k + 1)) *\n prod_seq (k + 1) 0 (F m) from\n calc prod_seq (k + 1) 0 ((F m) ∘ (G m a))\n _ = prod_seq k 0 ((F m) ∘ (G m a)) *\n F m (G m a k) := prod_seq_zero_step _ _\n _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *\n F m (G m a k) := by rw [ih]\n _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *\n ([a]_m * F m k) := by rw [FG_rp h1 h2]\n _ = [a]_m ^ ((num_rp_below m k) + 1) *\n ((prod_seq k 0 (F m)) * F m k) := by ring\n _ = [a]_m ^ (num_rp_below m (k + 1)) *\n prod_seq (k + 1) 0 (F m) := by\n rw [num_rp_below_step_rp h2, prod_seq_zero_step]\n done\n · -- Case 2. h2 : ¬rel_prime m k\n show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) =\n [a]_m ^ (num_rp_below m (k + 1)) *\n prod_seq (k + 1) 0 (F m) from\n calc prod_seq (k + 1) 0 ((F m) ∘ (G m a))\n _ = prod_seq k 0 ((F m) ∘ (G m a)) *\n F m (G m a k) := prod_seq_zero_step _ _\n _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *\n F m (G m a k) := by rw [ih]\n _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) *\n ([1]_m) := by rw [FG_not_rp h1 h2]\n _ = [a]_m ^ (num_rp_below m k) *\n (prod_seq k 0 (F m) * ([1]_m)) := by ring\n _ = [a]_m ^ (num_rp_below m (k + 1)) *\n prod_seq (k + 1) 0 (F m) := by\n rw [num_rp_below_step_not_rp h2, prod_seq_zero_step,\n F_not_rp_def h2]\n done\n done\n done", "proofType": "tactic", "proofLengthLines": 52, "proofLengthTokens": 2244 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done
lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a)
HTPI.G_maps_below
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1263, "tokenPositionInFile": 40532, "theoremPositionInFile": 116 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define --Goal : ∀ i < m, G m a i < m\n fix i : Nat\n assume h1 : i < m\n rewrite [G_def] --Goal : a * i % m < m\n show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m)\n done", "proofType": "tactic", "proofLengthLines": 6, "proofLengthTokens": 204 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done
lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g
HTPI.left_inv_one_one_below
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1271, "tokenPositionInFile": 40803, "theoremPositionInFile": 117 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": false, "proof": ":= sorry", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 8 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry
lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') : onto_below n g
HTPI.right_inv_onto_below
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1274, "tokenPositionInFile": 40924, "theoremPositionInFile": 118 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n define at h2; define\n fix k : Nat\n assume h3 : k < n\n apply Exists.intro (g' k)\n show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3)\n done", "proofType": "tactic", "proofLengthLines": 6, "proofLengthTokens": 163 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') : onto_below n g := by define at h2; define fix k : Nat assume h3 : k < n apply Exists.intro (g' k) show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3) done
lemma cc_mul_inv_mod_eq_one {m a : Nat} [NeZero m] (h1 : rel_prime m a) : [a]_m * [inv_mod m a]_m = [1]_m
HTPI.cc_mul_inv_mod_eq_one
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1284, "tokenPositionInFile": 41222, "theoremPositionInFile": 119 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h2 : 0 ≤ (gcd_c2 m a) % m := mod_nonneg m (gcd_c2 m a)\n show [a]_m * [inv_mod m a]_m = [1]_m from\n calc [a]_m * [inv_mod m a]_m\n _ = [a]_m * [Int.toNat ((gcd_c2 m a) % m)]_m := by rfl\n _ = [a]_m * [(gcd_c2 m a) % m]_m := by rw [Int.toNat_of_nonneg h2]\n _ = [a]_m * [gcd_c2 m a]_m := by rw [←cc_eq_mod]\n _ = [1]_m := gcd_c2_inv h1\n done", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 373 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') : onto_below n g := by define at h2; define fix k : Nat assume h3 : k < n apply Exists.intro (g' k) show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3) done lemma cc_mul_inv_mod_eq_one {m a : Nat} [NeZero m] (h1 : rel_prime m a) : [a]_m * [inv_mod m a]_m = [1]_m := by have h2 : 0 ≤ (gcd_c2 m a) % m := mod_nonneg m (gcd_c2 m a) show [a]_m * [inv_mod m a]_m = [1]_m from calc [a]_m * [inv_mod m a]_m _ = [a]_m * [Int.toNat ((gcd_c2 m a) % m)]_m := by rfl _ = [a]_m * [(gcd_c2 m a) % m]_m := by rw [Int.toNat_of_nonneg h2] _ = [a]_m * [gcd_c2 m a]_m := by rw [←cc_eq_mod] _ = [1]_m := gcd_c2_inv h1 done
lemma mul_mod_mod_eq_mul_mod (m a b : Nat) : (a * (b % m)) % m = (a * b) % m
HTPI.mul_mod_mod_eq_mul_mod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1295, "tokenPositionInFile": 41707, "theoremPositionInFile": 120 }
{ "inFilePremises": false, "repositoryPremises": false }
{ "hasProof": true, "proof": ":=\n calc a * (b % m) % m\n = a % m * (b % m % m) % m := Nat.mul_mod _ _ _\n _ = a % m * (b % m) % m := by rw [Nat.mod_mod]\n _ = a * b % m := (Nat.mul_mod _ _ _).symm", "proofType": "term", "proofLengthLines": 4, "proofLengthTokens": 175 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') : onto_below n g := by define at h2; define fix k : Nat assume h3 : k < n apply Exists.intro (g' k) show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3) done lemma cc_mul_inv_mod_eq_one {m a : Nat} [NeZero m] (h1 : rel_prime m a) : [a]_m * [inv_mod m a]_m = [1]_m := by have h2 : 0 ≤ (gcd_c2 m a) % m := mod_nonneg m (gcd_c2 m a) show [a]_m * [inv_mod m a]_m = [1]_m from calc [a]_m * [inv_mod m a]_m _ = [a]_m * [Int.toNat ((gcd_c2 m a) % m)]_m := by rfl _ = [a]_m * [(gcd_c2 m a) % m]_m := by rw [Int.toNat_of_nonneg h2] _ = [a]_m * [gcd_c2 m a]_m := by rw [←cc_eq_mod] _ = [1]_m := gcd_c2_inv h1 done lemma mul_mod_mod_eq_mul_mod (m a b : Nat) : (a * (b % m)) % m = (a * b) % m := calc a * (b % m) % m = a % m * (b % m % m) % m := Nat.mul_mod _ _ _ _ = a % m * (b % m) % m := by rw [Nat.mod_mod] _ = a * b % m := (Nat.mul_mod _ _ _).symm
lemma mod_mul_mod_eq_mul_mod (m a b : Nat) : (a % m * b) % m = (a * b) % m
HTPI.mod_mul_mod_eq_mul_mod
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1301, "tokenPositionInFile": 41961, "theoremPositionInFile": 121 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n rewrite [mul_comm, mul_mod_mod_eq_mul_mod, mul_comm]\n rfl\n done", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 73 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') : onto_below n g := by define at h2; define fix k : Nat assume h3 : k < n apply Exists.intro (g' k) show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3) done lemma cc_mul_inv_mod_eq_one {m a : Nat} [NeZero m] (h1 : rel_prime m a) : [a]_m * [inv_mod m a]_m = [1]_m := by have h2 : 0 ≤ (gcd_c2 m a) % m := mod_nonneg m (gcd_c2 m a) show [a]_m * [inv_mod m a]_m = [1]_m from calc [a]_m * [inv_mod m a]_m _ = [a]_m * [Int.toNat ((gcd_c2 m a) % m)]_m := by rfl _ = [a]_m * [(gcd_c2 m a) % m]_m := by rw [Int.toNat_of_nonneg h2] _ = [a]_m * [gcd_c2 m a]_m := by rw [←cc_eq_mod] _ = [1]_m := gcd_c2_inv h1 done lemma mul_mod_mod_eq_mul_mod (m a b : Nat) : (a * (b % m)) % m = (a * b) % m := calc a * (b % m) % m = a % m * (b % m % m) % m := Nat.mul_mod _ _ _ _ = a % m * (b % m) % m := by rw [Nat.mod_mod] _ = a * b % m := (Nat.mul_mod _ _ _).symm lemma mod_mul_mod_eq_mul_mod (m a b : Nat) : (a % m * b) % m = (a * b) % m := by rewrite [mul_comm, mul_mod_mod_eq_mul_mod, mul_comm] rfl done
theorem congr_iff_mod_eq_Nat (m a b : Nat) [NeZero m] : ↑a ≡ ↑b (MOD m) ↔ a % m = b % m
HTPI.congr_iff_mod_eq_Nat
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1306, "tokenPositionInFile": 42111, "theoremPositionInFile": 122 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": false, "proof": ":= sorry", "proofType": "term", "proofLengthLines": 0, "proofLengthTokens": 8 }
htpi
/- Copyright 2023 Daniel J. Velleman -/ import HTPILib.Chap6 namespace HTPI /- Definitions -/ lemma mod_succ_lt (a n : Nat) : a % (n + 1) < n + 1 := by have h : n + 1 > 0 := Nat.succ_pos n show a % (n + 1) < n + 1 from Nat.mod_lt a h done def gcd (a b : Nat) : Nat := match b with | 0 => a | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd (n + 1) (a % (n + 1)) termination_by b mutual def gcd_c1 (a b : Nat) : Int := match b with | 0 => 1 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c2 (n + 1) (a % (n + 1)) --Corresponds to s = t' termination_by b def gcd_c2 (a b : Nat) : Int := match b with | 0 => 0 | n + 1 => have : a % (n + 1) < n + 1 := mod_succ_lt a n gcd_c1 (n + 1) (a % (n + 1)) - (gcd_c2 (n + 1) (a % (n + 1))) * ↑(a / (n + 1)) --Corresponds to t = s' - t'q termination_by b end def prime (n : Nat) : Prop := 2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n def prime_factor (p n : Nat) : Prop := prime p ∧ p ∣ n def all_prime (l : List Nat) : Prop := ∀ p ∈ l, prime p def nondec (l : List Nat) : Prop := match l with | [] => True --Of course, True is a proposition that is always true | n :: L => (∀ m ∈ L, n ≤ m) ∧ nondec L def nondec_prime_list (l : List Nat) : Prop := all_prime l ∧ nondec l def prod (l : List Nat) : Nat := match l with | [] => 1 | n :: L => n * (prod L) def prime_factorization (n : Nat) (l : List Nat) : Prop := nondec_prime_list l ∧ prod l = n def rel_prime (a b : Nat) : Prop := gcd a b = 1 def congr_mod (m : Nat) (a b : Int) : Prop := (↑m : Int) ∣ (a - b) def cc (m : Nat) (a : Int) : ZMod m := (↑a : ZMod m) notation:50 a " ≡ " b " (MOD " m ")" => congr_mod m a b notation:max "["a"]_"m:max => cc m a def invertible {m : Nat} (X : ZMod m) : Prop := ∃ (Y : ZMod m), X * Y = [1]_m def num_rp_below (m k : Nat) : Nat := match k with | 0 => 0 | j + 1 => if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j def phi (m : Nat) : Nat := num_rp_below m m def prod_seq {m : Nat} (j k : Nat) (f : Nat → ZMod m) : ZMod m := match j with | 0 => [1]_m | n + 1 => prod_seq n k f * f (k + n) def maps_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i < n, g i < n def one_one_below (n : Nat) (g : Nat → Nat) : Prop := ∀ i1 < n, ∀ i2 < n, g i1 = g i2 → i1 = i2 def onto_below (n : Nat) (g : Nat → Nat) : Prop := ∀ k < n, ∃ i < n, g i = k def perm_below (n : Nat) (g : Nat → Nat) : Prop := maps_below n g ∧ one_one_below n g ∧ onto_below n g def inv_mod (m a : Nat) : Nat := Int.toNat ((gcd_c2 m a) % m) def swap (u v i : Nat) : Nat := if i = u then v else if i = v then u else i namespace Euler --For definitions specific to Euler's theorem def F (m i : Nat) : ZMod m := if gcd m i = 1 then [i]_m else [1]_m def G (m a i : Nat) : Nat := (a * i) % m def Ginv (m a i : Nat) : Nat := G m (inv_mod m a) i end Euler /- Section 7.1 -/ theorem dvd_mod_of_dvd_a_b {a b d : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ (a % b) := by set q : Nat := a / b have h3 : b * q + a % b = a := Nat.div_add_mod a b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 define --Goal : ∃ (c : Nat), a % b = d * c apply Exists.intro (j - k * q) show a % b = d * (j - k * q) from calc a % b _ = b * q + a % b - b * q := (Nat.add_sub_cancel_left _ _).symm _ = a - b * q := by rw [h3] _ = d * j - d * (k * q) := by rw [h4, h5, mul_assoc] _ = d * (j - k * q) := (Nat.mul_sub_left_distrib _ _ _).symm done theorem dvd_a_of_dvd_b_mod {a b d : Nat} (h1 : d ∣ b) (h2 : d ∣ (a % b)) : d ∣ a := sorry #eval gcd 672 161 --Answer: 7 lemma gcd_base (a : Nat) : gcd a 0 = a := by rfl lemma gcd_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd a b = gcd b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] --Goal : gcd a (n + 1) = gcd (n + 1) (a % (n + 1)) rfl done lemma mod_nonzero_lt (a : Nat) {b : Nat} (h : b ≠ 0) : a % b < b := by have h1 : b > 0 := Nat.pos_of_ne_zero h show a % b < b from Nat.mod_lt a h1 done lemma dvd_self (n : Nat) : n ∣ n := by apply Exists.intro 1 ring done theorem gcd_dvd : ∀ (b a : Nat), (gcd a b) ∣ a ∧ (gcd a b) ∣ b := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd a b_1) ∣ a ∧ (gcd a b_1) ∣ b_1 fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_base] --Goal: a ∣ a ∧ a ∣ 0 apply And.intro (dvd_self a) define apply Exists.intro 0 rfl done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_nonzero a h1] --Goal : gcd b (a % b) ∣ a ∧ gcd b (a % b) ∣ b have h2 : a % b < b := mod_nonzero_lt a h1 have h3 : (gcd b (a % b)) ∣ b ∧ (gcd b (a % b)) ∣ (a % b) := ih (a % b) h2 b apply And.intro _ h3.left show (gcd b (a % b)) ∣ a from dvd_a_of_dvd_b_mod h3.left h3.right done done theorem gcd_dvd_left (a b : Nat) : (gcd a b) ∣ a := (gcd_dvd b a).left theorem gcd_dvd_right (a b : Nat) : (gcd a b) ∣ b := (gcd_dvd b a).right lemma gcd_c1_base (a : Nat) : gcd_c1 a 0 = 1 := by rfl lemma gcd_c1_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c1 a b = gcd_c2 b (a % b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done lemma gcd_c2_base (a : Nat) : gcd_c2 a 0 = 0 := by rfl lemma gcd_c2_nonzero (a : Nat) {b : Nat} (h : b ≠ 0) : gcd_c2 a b = gcd_c1 b (a % b) - (gcd_c2 b (a % b)) * ↑(a / b) := by obtain (n : Nat) (h2 : b = n + 1) from exists_eq_add_one_of_ne_zero h rewrite [h2] rfl done theorem gcd_lin_comb : ∀ (b a : Nat), (gcd_c1 a b) * ↑a + (gcd_c2 a b) * ↑b = ↑(gcd a b) := by by_strong_induc fix b : Nat assume ih : ∀ b_1 < b, ∀ (a : Nat), (gcd_c1 a b_1) * ↑a + (gcd_c2 a b_1) * ↑b_1 = ↑(gcd a b_1) fix a : Nat by_cases h1 : b = 0 · -- Case 1. h1 : b = 0 rewrite [h1, gcd_c1_base, gcd_c2_base, gcd_base] --Goal : 1 * ↑a + 0 * ↑0 = ↑a ring done · -- Case 2. h1 : b ≠ 0 rewrite [gcd_c1_nonzero a h1, gcd_c2_nonzero a h1, gcd_nonzero a h1] --Goal : gcd_c2 b (a % b) * ↑a + -- (gcd_c1 b (a % b) - gcd_c2 b (a % b) * ↑(a / b)) * ↑b = -- ↑(gcd b (a % b)) set r : Nat := a % b set q : Nat := a / b set s : Int := gcd_c1 b r set t : Int := gcd_c2 b r --Goal : t * ↑a + (s - t * ↑q) * ↑b = ↑(gcd b r) have h2 : r < b := mod_nonzero_lt a h1 have h3 : s * ↑b + t * ↑r = ↑(gcd b r) := ih r h2 b have h4 : b * q + r = a := Nat.div_add_mod a b rewrite [←h3, ←h4] rewrite [Nat.cast_add, Nat.cast_mul] --Goal : t * (↑b * ↑q + ↑r) + (s - t * ↑q) * ↑b = s * ↑b + t * ↑r ring done done #eval gcd_c1 672 161 --Answer: 6 #eval gcd_c2 672 161 --Answer: -25 --Note 6 * 672 - 25 * 161 = 4032 - 4025 = 7 = gcd 672 161 theorem Theorem_7_1_6 {d a b : Nat} (h1 : d ∣ a) (h2 : d ∣ b) : d ∣ gcd a b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑d ∣ ↑(gcd a b) set s : Int := gcd_c1 a b set t : Int := gcd_c2 a b have h3 : s * ↑a + t * ↑b = ↑(gcd a b) := gcd_lin_comb b a rewrite [←h3] --Goal : ↑d ∣ s * ↑a + t * ↑b obtain (j : Nat) (h4 : a = d * j) from h1 obtain (k : Nat) (h5 : b = d * k) from h2 rewrite [h4, h5, Nat.cast_mul, Nat.cast_mul] --Goal : ↑d ∣ s * (↑d * ↑j) + t * (↑d * ↑k) define apply Exists.intro (s * ↑j + t * ↑k) ring done /- Section 7.2 -/ theorem dvd_trans {a b c : Nat} (h1 : a ∣ b) (h2 : b ∣ c) : a ∣ c := by define at h1; define at h2; define obtain (m : Nat) (h3 : b = a * m) from h1 obtain (n : Nat) (h4 : c = b * n) from h2 rewrite [h3, mul_assoc] at h4 apply Exists.intro (m * n) show c = a * (m * n) from h4 done lemma exists_prime_factor : ∀ (n : Nat), 2 ≤ n → ∃ (p : Nat), prime_factor p n := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, 2 ≤ n_1 → ∃ (p : Nat), prime_factor p n_1 assume h1 : 2 ≤ n by_cases h2 : prime n · -- Case 1. h2 : prime n apply Exists.intro n define --Goal : prime n ∧ n ∣ n show prime n ∧ n ∣ n from And.intro h2 (dvd_self n) done · -- Case 2. h2 : ¬prime n define at h2 --h2 : ¬(2 ≤ n ∧ ¬∃ (a b : Nat), a * b = n ∧ a < n ∧ b < n) demorgan at h2 disj_syll h2 h1 obtain (a : Nat) (h3 : ∃ (b : Nat), a * b = n ∧ a < n ∧ b < n) from h2 obtain (b : Nat) (h4 : a * b = n ∧ a < n ∧ b < n) from h3 have h5 : 2 ≤ a := by by_contra h6 have h7 : a ≤ 1 := by linarith have h8 : n ≤ b := calc n _ = a * b := h4.left.symm _ ≤ 1 * b := by rel [h7] _ = b := by ring linarith --n ≤ b contradicts b < n done have h6 : ∃ (p : Nat), prime_factor p a := ih a h4.right.left h5 obtain (p : Nat) (h7 : prime_factor p a) from h6 apply Exists.intro p define --Goal : prime p ∧ p ∣ n define at h7 --h7 : prime p ∧ p ∣ a apply And.intro h7.left have h8 : a ∣ n := by apply Exists.intro b show n = a * b from (h4.left).symm done show p ∣ n from dvd_trans h7.right h8 done done lemma exists_least_prime_factor {n : Nat} (h : 2 ≤ n) : ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q := by set S : Set Nat := {p : Nat | prime_factor p n} have h2 : ∃ (p : Nat), p ∈ S := exists_prime_factor n h show ∃ (p : Nat), prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q from well_ord_princ S h2 done lemma all_prime_nil : all_prime [] := by define --Goal : ∀ p ∈ [], prime p fix p : Nat contrapos --Goal : ¬prime p → p ∉ [] assume h1 : ¬prime p show p ∉ [] from List.not_mem_nil p done lemma all_prime_cons (n : Nat) (L : List Nat) : all_prime (n :: L) ↔ prime n ∧ all_prime L := by apply Iff.intro · -- (→) assume h1 : all_prime (n :: L) --Goal : prime n ∧ all_prime L define at h1 --h1 : ∀ p ∈ n :: L, prime p apply And.intro (h1 n (List.mem_cons_self n L)) define --Goal : ∀ p ∈ L, prime p fix p : Nat assume h2 : p ∈ L show prime p from h1 p (List.mem_cons_of_mem n h2) done · -- (←) assume h1 : prime n ∧ all_prime L --Goal : all_prime (n :: l) define : all_prime L at h1 define fix p : Nat assume h2 : p ∈ n :: L rewrite [List.mem_cons] at h2 --h2 : p = n ∨ p ∈ L by_cases on h2 · -- Case 1. h2 : p = n rewrite [h2] show prime n from h1.left done · -- Case 2. h2 : p ∈ L show prime p from h1.right p h2 done done done lemma nondec_nil : nondec [] := by define --Goal : True trivial --trivial proves some obviously true statements, such as True done lemma nondec_cons (n : Nat) (L : List Nat) : nondec (n :: L) ↔ (∀ m ∈ L, n ≤ m) ∧ nondec L := by rfl lemma prod_nil : prod [] = 1 := by rfl lemma prod_cons : prod (n :: L) = n * (prod L) := by rfl lemma exists_cons_of_length_eq_succ {A : Type} {l : List A} {n : Nat} (h : l.length = n + 1) : ∃ (a : A) (L : List A), l = a :: L ∧ L.length = n := by have h1 : ¬l.length = 0 := by linarith rewrite [List.length_eq_zero] at h1 obtain (a : A) (h2 : ∃ (L : List A), l = a :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List A) (h3 : l = a :: L) from h2 apply Exists.intro a apply Exists.intro L apply And.intro h3 have h4 : (a :: L).length = L.length + 1 := List.length_cons a L rewrite [←h3, h] at h4 show L.length = n from (Nat.add_right_cancel h4).symm done lemma list_elt_dvd_prod_by_length (a : Nat) : ∀ (n : Nat), ∀ (l : List Nat), l.length = n → a ∈ l → a ∣ prod l := by by_induc · --Base Case fix l : List Nat assume h1 : l.length = 0 rewrite [List.length_eq_zero] at h1 --h1 : l = [] rewrite [h1] --Goal : a ∈ [] → a ∣ prod [] contrapos assume h2 : ¬a ∣ prod [] show a ∉ [] from List.not_mem_nil a done · -- Induction Step fix n : Nat assume ih : ∀ (l : List Nat), List.length l = n → a ∈ l → a ∣ prod l fix l : List Nat assume h1 : l.length = n + 1 --Goal : a ∈ l → a ∣ prod l obtain (b : Nat) (h2 : ∃ (L : List Nat), l = b :: L ∧ L.length = n) from exists_cons_of_length_eq_succ h1 obtain (L : List Nat) (h3 : l = b :: L ∧ L.length = n) from h2 have h4 : a ∈ L → a ∣ prod L := ih L h3.right assume h5 : a ∈ l rewrite [h3.left, prod_cons] --Goal : a ∣ b * prod L rewrite [h3.left, List.mem_cons] at h5 --h5 : a = b ∨ a ∈ L by_cases on h5 · -- Case 1. h5 : a = b apply Exists.intro (prod L) rewrite [h5] rfl done · -- Case 2. h5 : a ∈ L have h6 : a ∣ prod L := h4 h5 have h7 : prod L ∣ b * prod L := by apply Exists.intro b ring done show a ∣ b * prod L from dvd_trans h6 h7 done done done lemma list_elt_dvd_prod {a : Nat} {l : List Nat} (h : a ∈ l) : a ∣ prod l := by set n : Nat := l.length have h1 : l.length = n := by rfl show a ∣ prod l from list_elt_dvd_prod_by_length a n l h1 h done lemma exists_prime_factorization : ∀ (n : Nat), n ≥ 1 → ∃ (l : List Nat), prime_factorization n l := by by_strong_induc fix n : Nat assume ih : ∀ n_1 < n, n_1 ≥ 1 → ∃ (l : List Nat), prime_factorization n_1 l assume h1 : n ≥ 1 by_cases h2 : n = 1 · -- Case 1. h2 : n = 1 apply Exists.intro [] define apply And.intro · -- Proof of nondec_prime_list [] define show all_prime [] ∧ nondec [] from And.intro all_prime_nil nondec_nil done · -- Proof of prod [] = n rewrite [prod_nil, h2] rfl done done · -- Case 2. h2 : n ≠ 1 have h3 : n ≥ 2 := lt_of_le_of_ne' h1 h2 obtain (p : Nat) (h4 : prime_factor p n ∧ ∀ (q : Nat), prime_factor q n → p ≤ q) from exists_least_prime_factor h3 have p_prime_factor : prime_factor p n := h4.left define at p_prime_factor have p_prime : prime p := p_prime_factor.left have p_dvd_n : p ∣ n := p_prime_factor.right have p_least : ∀ (q : Nat), prime_factor q n → p ≤ q := h4.right obtain (m : Nat) (n_eq_pm : n = p * m) from p_dvd_n have h5 : m ≠ 0 := by contradict h1 with h6 have h7 : n = 0 := calc n _ = p * m := n_eq_pm _ = p * 0 := by rw [h6] _ = 0 := by ring rewrite [h7] decide done have m_pos : 0 < m := Nat.pos_of_ne_zero h5 have m_lt_n : m < n := by define at p_prime show m < n from calc m _ < m + m := by linarith _ = 2 * m := by ring _ ≤ p * m := by rel [p_prime.left] _ = n := n_eq_pm.symm done obtain (L : List Nat) (h6 : prime_factorization m L) from ih m m_lt_n m_pos define at h6 have ndpl_L : nondec_prime_list L := h6.left define at ndpl_L apply Exists.intro (p :: L) define apply And.intro · -- Proof of nondec_prime_list (p :: L) define apply And.intro · -- Proof of all_prime (p :: L) rewrite [all_prime_cons] show prime p ∧ all_prime L from And.intro p_prime ndpl_L.left done · -- Proof of nondec (p :: L) rewrite [nondec_cons] apply And.intro _ ndpl_L.right fix q : Nat assume q_in_L : q ∈ L have h7 : q ∣ prod L := list_elt_dvd_prod q_in_L rewrite [h6.right] at h7 --h7 : q ∣ m have h8 : m ∣ n := by apply Exists.intro p rewrite [n_eq_pm] ring done have q_dvd_n : q ∣ n := dvd_trans h7 h8 have ap_L : all_prime L := ndpl_L.left define at ap_L have q_prime_factor : prime_factor q n := And.intro (ap_L q q_in_L) q_dvd_n show p ≤ q from p_least q q_prime_factor done done · -- Proof of prod (p :: L) = n rewrite [prod_cons, h6.right, n_eq_pm] rfl done done done theorem Theorem_7_2_2 {a b c : Nat} (h1 : c ∣ a * b) (h2 : rel_prime a c) : c ∣ b := by rewrite [←Int.natCast_dvd_natCast] --Goal : ↑c ∣ ↑b define at h1; define at h2; define obtain (j : Nat) (h3 : a * b = c * j) from h1 set s : Int := gcd_c1 a c set t : Int := gcd_c2 a c have h4 : s * ↑a + t * ↑c = ↑(gcd a c) := gcd_lin_comb c a rewrite [h2, Nat.cast_one] at h4 --h4 : s * ↑a + t * ↑c = (1 : Int) apply Exists.intro (s * ↑j + t * ↑b) show ↑b = ↑c * (s * ↑j + t * ↑b) from calc ↑b _ = (1 : Int) * ↑b := (one_mul _).symm _ = (s * ↑a + t * ↑c) * ↑b := by rw [h4] _ = s * (↑a * ↑b) + t * ↑c * ↑b := by ring _ = s * (↑c * ↑j) + t * ↑c * ↑b := by rw [←Nat.cast_mul a b, h3, Nat.cast_mul c j] _ = ↑c * (s * ↑j + t * ↑b) := by ring done lemma le_nonzero_prod_left {a b : Nat} (h : a * b ≠ 0) : a ≤ a * b := by have h1 : b ≠ 0 := by contradict h with h1 rewrite [h1] ring done have h2 : 1 ≤ b := Nat.pos_of_ne_zero h1 show a ≤ a * b from calc a = a * 1 := (mul_one a).symm _ ≤ a * b := by rel [h2] done lemma le_nonzero_prod_right {a b : Nat} (h : a * b ≠ 0) : b ≤ a * b := by rewrite [mul_comm] rewrite [mul_comm] at h show b ≤ b * a from le_nonzero_prod_left h done lemma dvd_prime {a p : Nat} (h1 : prime p) (h2 : a ∣ p) : a = 1 ∨ a = p := sorry lemma rel_prime_of_prime_not_dvd {a p : Nat} (h1 : prime p) (h2 : ¬p ∣ a) : rel_prime a p := by have h3 : gcd a p ∣ a := gcd_dvd_left a p have h4 : gcd a p ∣ p := gcd_dvd_right a p have h5 : gcd a p = 1 ∨ gcd a p = p := dvd_prime h1 h4 have h6 : gcd a p ≠ p := by contradict h2 with h6 rewrite [h6] at h3 show p ∣ a from h3 done disj_syll h5 h6 show rel_prime a p from h5 done theorem Theorem_7_2_3 {a b p : Nat} (h1 : prime p) (h2 : p ∣ a * b) : p ∣ a ∨ p ∣ b := by or_right with h3 have h4 : rel_prime a p := rel_prime_of_prime_not_dvd h1 h3 show p ∣ b from Theorem_7_2_2 h2 h4 done lemma ge_one_of_prod_one {a b : Nat} (h : a * b = 1) : a ≥ 1 := by have h1 : a ≠ 0 := by by_contra h1 rewrite [h1] at h contradict h linarith done show a ≥ 1 from Nat.pos_of_ne_zero h1 done lemma eq_one_of_prod_one {a b : Nat} (h : a * b = 1) : a = 1 := by have h1 : a ≥ 1 := ge_one_of_prod_one h have h2 : a * b ≠ 0 := by linarith have h3 : a ≤ a * b := le_nonzero_prod_left h2 rewrite [h] at h3 show a = 1 from Nat.le_antisymm h3 h1 done lemma eq_one_of_dvd_one {n : Nat} (h : n ∣ 1) : n = 1 := by obtain (j : Nat) (h1 : 1 = n * j) from h show n = 1 from eq_one_of_prod_one h1.symm done lemma prime_not_one {p : Nat} (h : prime p) : p ≠ 1 := by define at h linarith done theorem Theorem_7_2_4 {p : Nat} (h1 : prime p) : ∀ (l : List Nat), p ∣ prod l → ∃ a ∈ l, p ∣ a := by apply List.rec · -- Base Case. Goal : p ∣ prod [] → ∃ a ∈ [], p ∣ a rewrite [prod_nil] assume h2 : p ∣ 1 show ∃ a ∈ [], p ∣ a from absurd (eq_one_of_dvd_one h2) (prime_not_one h1) done · -- Induction Step fix b : Nat fix L : List Nat assume ih : p ∣ prod L → ∃ a ∈ L, p ∣ a --Goal : p ∣ prod (b :: L) → ∃ a ∈ b :: L, p ∣ a assume h2 : p ∣ prod (b :: L) rewrite [prod_cons] at h2 have h3 : p ∣ b ∨ p ∣ prod L := Theorem_7_2_3 h1 h2 by_cases on h3 · -- Case 1. h3 : p ∣ b apply Exists.intro b show b ∈ b :: L ∧ p ∣ b from And.intro (List.mem_cons_self b L) h3 done · -- Case 2. h3 : p ∣ prod L obtain (a : Nat) (h4 : a ∈ L ∧ p ∣ a) from ih h3 apply Exists.intro a show a ∈ b :: L ∧ p ∣ a from And.intro (List.mem_cons_of_mem b h4.left) h4.right done done done lemma prime_in_list {p : Nat} {l : List Nat} (h1 : prime p) (h2 : all_prime l) (h3 : p ∣ prod l) : p ∈ l := by obtain (a : Nat) (h4 : a ∈ l ∧ p ∣ a) from Theorem_7_2_4 h1 l h3 define at h2 have h5 : prime a := h2 a h4.left have h6 : p = 1 ∨ p = a := dvd_prime h5 h4.right disj_syll h6 (prime_not_one h1) rewrite [h6] show a ∈ l from h4.left done lemma first_le_first {p q : Nat} {l m : List Nat} (h1 : nondec_prime_list (p :: l)) (h2 : nondec_prime_list (q :: m)) (h3 : prod (p :: l) = prod (q :: m)) : p ≤ q := by define at h1; define at h2 have h4 : q ∣ prod (p :: l) := by define apply Exists.intro (prod m) rewrite [←prod_cons] show prod (p :: l) = prod (q :: m) from h3 done have h5 : all_prime (q :: m) := h2.left rewrite [all_prime_cons] at h5 have h6 : q ∈ p :: l := prime_in_list h5.left h1.left h4 have h7 : nondec (p :: l) := h1.right rewrite [nondec_cons] at h7 rewrite [List.mem_cons] at h6 by_cases on h6 · -- Case 1. h6 : q = p linarith done · -- Case 2. h6 : q ∈ l have h8 : ∀ m ∈ l, p ≤ m := h7.left show p ≤ q from h8 q h6 done done lemma nondec_prime_list_tail {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : nondec_prime_list l := by define at h define rewrite [all_prime_cons, nondec_cons] at h show all_prime l ∧ nondec l from And.intro h.left.right h.right.right done lemma cons_prod_not_one {p : Nat} {l : List Nat} (h : nondec_prime_list (p :: l)) : prod (p :: l) ≠ 1 := by define at h have h1 : all_prime (p :: l) := h.left rewrite [all_prime_cons] at h1 rewrite [prod_cons] by_contra h2 show False from (prime_not_one h1.left) (eq_one_of_prod_one h2) done lemma list_nil_iff_prod_one {l : List Nat} (h : nondec_prime_list l) : l = [] ↔ prod l = 1 := by apply Iff.intro · -- (→) assume h1 : l = [] rewrite [h1] show prod [] = 1 from prod_nil done · -- (←) contrapos assume h1 : ¬l = [] obtain (p : Nat) (h2 : ∃ (L : List Nat), l = p :: L) from List.exists_cons_of_ne_nil h1 obtain (L : List Nat) (h3 : l = p :: L) from h2 rewrite [h3] at h rewrite [h3] show ¬prod (p :: L) = 1 from cons_prod_not_one h done done lemma prime_pos {p : Nat} (h : prime p) : p > 0 := by define at h linarith done theorem Theorem_7_2_5 : ∀ (l1 l2 : List Nat), nondec_prime_list l1 → nondec_prime_list l2 → prod l1 = prod l2 → l1 = l2 := by apply List.rec · -- Base Case. Goal : ∀ (l2 : List Nat), nondec_prime_list [] → -- nondec_prime_list l2 → prod [] = prod l2 → [] = l2 fix l2 : List Nat assume h1 : nondec_prime_list [] assume h2 : nondec_prime_list l2 assume h3 : prod [] = prod l2 rewrite [prod_nil, eq_comm, ←list_nil_iff_prod_one h2] at h3 show [] = l2 from h3.symm done · -- Induction Step fix p : Nat fix L1 : List Nat assume ih : ∀ (L2 : List Nat), nondec_prime_list L1 → nondec_prime_list L2 → prod L1 = prod L2 → L1 = L2 -- Goal : ∀ (l2 : List Nat), nondec_prime_list (p :: L1) → -- nondec_prime_list l2 → prod (p :: L1) = prod l2 → p :: L1 = l2 fix l2 : List Nat assume h1 : nondec_prime_list (p :: L1) assume h2 : nondec_prime_list l2 assume h3 : prod (p :: L1) = prod l2 have h4 : ¬prod (p :: L1) = 1 := cons_prod_not_one h1 rewrite [h3, ←list_nil_iff_prod_one h2] at h4 obtain (q : Nat) (h5 : ∃ (L : List Nat), l2 = q :: L) from List.exists_cons_of_ne_nil h4 obtain (L2 : List Nat) (h6 : l2 = q :: L2) from h5 rewrite [h6] at h2 --h2 : nondec_prime_list (q :: L2) rewrite [h6] at h3 --h3 : prod (p :: L1) = prod (q :: L2) have h7 : p ≤ q := first_le_first h1 h2 h3 have h8 : q ≤ p := first_le_first h2 h1 h3.symm have h9 : p = q := by linarith rewrite [h9, prod_cons, prod_cons] at h3 --h3 : q * prod L1 = q * prod L2 have h10 : nondec_prime_list L1 := nondec_prime_list_tail h1 have h11 : nondec_prime_list L2 := nondec_prime_list_tail h2 define at h2 have h12 : all_prime (q :: L2) := h2.left rewrite [all_prime_cons] at h12 have h13 : q > 0 := prime_pos h12.left have h14 : prod L1 = prod L2 := Nat.eq_of_mul_eq_mul_left h13 h3 have h15 : L1 = L2 := ih L2 h10 h11 h14 rewrite [h6, h9, h15] rfl done done theorem fund_thm_arith (n : Nat) (h : n ≥ 1) : ∃! (l : List Nat), prime_factorization n l := by exists_unique · -- Existence show ∃ (l : List Nat), prime_factorization n l from exists_prime_factorization n h done · -- Uniqueness fix l1 : List Nat; fix l2 : List Nat assume h1 : prime_factorization n l1 assume h2 : prime_factorization n l2 define at h1; define at h2 have h3 : prod l1 = n := h1.right rewrite [←h2.right] at h3 show l1 = l2 from Theorem_7_2_5 l1 l2 h1.left h2.left h3 done done /- Section 7.3 -/ theorem congr_refl (m : Nat) : ∀ (a : Int), a ≡ a (MOD m) := by fix a : Int define --Goal : ∃ (c : Int), a - a = ↑m * c apply Exists.intro 0 ring done theorem congr_symm {m : Nat} : ∀ {a b : Int}, a ≡ b (MOD m) → b ≡ a (MOD m) := by fix a : Int; fix b : Int assume h1 : a ≡ b (MOD m) define at h1 --h1 : ∃ (c : Int), a - b = ↑m * c define --Goal : ∃ (c : Int), b - a = ↑m * c obtain (c : Int) (h2 : a - b = m * c) from h1 apply Exists.intro (-c) show b - a = m * (-c) from calc b - a _ = -(a - b) := by ring _ = -(m * c) := by rw [h2] _ = m * (-c) := by ring done theorem congr_trans {m : Nat} : ∀ {a b c : Int}, a ≡ b (MOD m) → b ≡ c (MOD m) → a ≡ c (MOD m) := sorry /- Fundamental properties of congruence classes -/ lemma cc_eq_iff_val_eq {n : Nat} (X Y : ZMod (n + 1)) : X = Y ↔ X.val = Y.val := Fin.ext_iff lemma val_nat_eq_mod (n k : Nat) : ([k]_(n + 1)).val = k % (n + 1) := by rfl lemma val_zero (n : Nat) : ([0]_(n + 1)).val = 0 := by rfl theorem cc_rep {m : Nat} (X : ZMod m) : ∃ (a : Int), X = [a]_m := match m with | 0 => by apply Exists.intro X rfl done | n + 1 => by apply Exists.intro ↑(X.val) have h1 : X.val < n + 1 := Fin.prop X rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, Nat.mod_eq_of_lt h1] rfl done theorem add_class (m : Nat) (a b : Int) : [a]_m + [b]_m = [a + b]_m := (Int.cast_add a b).symm theorem mul_class (m : Nat) (a b : Int) : [a]_m * [b]_m = [a * b]_m := (Int.cast_mul a b).symm lemma cc_eq_iff_sub_zero (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ [a - b]_m = [0]_m := by apply Iff.intro · -- (→) assume h1 : [a]_m = [b]_m have h2 : a - b = a + (-b) := by ring have h3 : b + (-b) = 0 := by ring show [a - b]_m = [0]_m from calc [a - b]_m _ = [a + (-b)]_m := by rw [h2] _ = [a]_m + [-b]_m := by rw [add_class] _ = [b]_m + [-b]_m := by rw [h1] _ = [b + -b]_m := by rw [add_class] _ = [0]_m := by rw [h3] done · -- (←) assume h1 : [a - b]_m = [0]_m have h2 : b + (a - b) = a := by ring have h3 : b + 0 = b := by ring show [a]_m = [b]_m from calc [a]_m _ = [b + (a - b)]_m := by rw [h2] _ = [b]_m + [a - b]_m := by rw [add_class] _ = [b]_m + [0]_m := by rw [h1] _ = [b + 0]_m := by rw [add_class] _ = [b]_m := by rw [h3] done done lemma cc_neg_zero_of_cc_zero (m : Nat) (a : Int) : [a]_m = [0]_m → [-a]_m = [0]_m := by assume h1 : [a]_m = [0]_m have h2 : 0 + (-a) = -a := by ring have h3 : a + (-a) = 0 := by ring show [-a]_m = [0]_m from calc [-a]_m _ = [0 + (-a)]_m := by rw [h2] _ = [0]_m + [-a]_m := by rw [add_class] _ = [a]_m + [-a]_m := by rw [h1] _ = [a + (-a)]_m := by rw [add_class] _ = [0]_m := by rw [h3] done lemma cc_neg_zero_iff_cc_zero (m : Nat) (a : Int) : [-a]_m = [0]_m ↔ [a]_m = [0]_m := by apply Iff.intro _ (cc_neg_zero_of_cc_zero m a) assume h1 : [-a]_m = [0]_m have h2 : [-(-a)]_m = [0]_m := cc_neg_zero_of_cc_zero m (-a) h1 have h3 : -(-a) = a := by ring rewrite [h3] at h2 show [a]_m = [0]_m from h2 done lemma cc_mod_0 (a : Int) : [a]_0 = a := by rfl lemma cc_nat_zero_iff_dvd (m k : Nat) : [k]_m = [0]_m ↔ m ∣ k := match m with | 0 => by have h : (0 : Int) = (↑(0 : Nat) : Int) := by rfl rewrite [cc_mod_0, cc_mod_0, h, Nat.cast_inj] apply Iff.intro · -- (→) assume h1 : k = 0 rewrite [h1] show 0 ∣ 0 from dvd_self 0 done · -- (←) assume h1 : 0 ∣ k obtain (c : Nat) (h2 : k = 0 * c) from h1 rewrite [h2] ring done done | n + 1 => by rewrite [cc_eq_iff_val_eq, val_nat_eq_mod, val_zero] show k % (n + 1) = 0 ↔ n + 1 ∣ k from (Nat.dvd_iff_mod_eq_zero (n + 1) k).symm done lemma cc_zero_iff_dvd (m : Nat) (a : Int) : [a]_m = [0]_m ↔ ↑m ∣ a := by obtain (k : Nat) (h1 : a = ↑k ∨ a = -↑k) from Int.eq_nat_or_neg a by_cases on h1 · -- Case 1. h1: a = ↑k rewrite [h1, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done · -- Case 2. h1: a = -↑k rewrite [h1, cc_neg_zero_iff_cc_zero, Int.dvd_neg, Int.natCast_dvd_natCast] show [↑k]_m = [0]_m ↔ m ∣ k from cc_nat_zero_iff_dvd m k done done theorem cc_eq_iff_congr (m : Nat) (a b : Int) : [a]_m = [b]_m ↔ a ≡ b (MOD m) := calc [a]_m = [b]_m _ ↔ [a - b]_m = [0]_m := cc_eq_iff_sub_zero m a b _ ↔ ↑m ∣ (a - b) := cc_zero_iff_dvd m (a - b) _ ↔ a ≡ b (MOD m) := by rfl /- End of fundamental properties of congruence classes -/ lemma mod_nonneg (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m := by have h1 : (↑m : Int) ≠ 0 := (Nat.cast_ne_zero).rtl (NeZero.ne m) show 0 ≤ a % m from Int.emod_nonneg a h1 done lemma mod_lt (m : Nat) [NeZero m] (a : Int) : a % m < m := by have h1 : m > 0 := Nat.pos_of_ne_zero (NeZero.ne m) have h2 : (↑m : Int) > 0 := (Nat.cast_pos).rtl h1 show a % m < m from Int.emod_lt_of_pos a h2 done lemma congr_mod_mod (m : Nat) (a : Int) : a ≡ a % m (MOD m) := by define have h1 : m * (a / m) + a % m = a := Int.ediv_add_emod a m apply Exists.intro (a / m) show a - a % m = m * (a / m) from calc a - (a % m) _ = m * (a / m) + a % m - a % m := by rw [h1] _ = m * (a / m) := by ring done lemma mod_cmpl_res (m : Nat) [NeZero m] (a : Int) : 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) := And.intro (mod_nonneg m a) (And.intro (mod_lt m a) (congr_mod_mod m a)) theorem Theorem_7_3_1 (m : Nat) [NeZero m] (a : Int) : ∃! (r : Int), 0 ≤ r ∧ r < m ∧ a ≡ r (MOD m) := by exists_unique · -- Existence apply Exists.intro (a % m) show 0 ≤ a % m ∧ a % m < m ∧ a ≡ a % m (MOD m) from mod_cmpl_res m a done · -- Uniqueness fix r1 : Int; fix r2 : Int assume h1 : 0 ≤ r1 ∧ r1 < m ∧ a ≡ r1 (MOD m) assume h2 : 0 ≤ r2 ∧ r2 < m ∧ a ≡ r2 (MOD m) have h3 : r1 ≡ r2 (MOD m) := congr_trans (congr_symm h1.right.right) h2.right.right obtain (d : Int) (h4 : r1 - r2 = m * d) from h3 have h5 : r1 - r2 < m * 1 := by linarith have h6 : m * (-1) < r1 - r2 := by linarith rewrite [h4] at h5 --h5 : m * d < m * 1 rewrite [h4] at h6 --h6 : m * -1 < m * d have h7 : (↑m : Int) ≥ 0 := Nat.cast_nonneg m have h8 : d < 1 := lt_of_mul_lt_mul_of_nonneg_left h5 h7 have h9 : -1 < d := lt_of_mul_lt_mul_of_nonneg_left h6 h7 have h10 : d = 0 := by linarith show r1 = r2 from calc r1 _ = r1 - r2 + r2 := by ring _ = m * 0 + r2 := by rw [h4, h10] _ = r2 := by ring done done lemma cc_eq_mod (m : Nat) (a : Int) : [a]_m = [a % m]_m := (cc_eq_iff_congr m a (a % m)).rtl (congr_mod_mod m a) theorem Theorem_7_3_6_1 {m : Nat} (X Y : ZMod m) : X + Y = Y + X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X obtain (b : Int) (h2 : Y = [b]_m) from cc_rep Y rewrite [h1, h2] have h3 : a + b = b + a := by ring show [a]_m + [b]_m = [b]_m + [a]_m from calc [a]_m + [b]_m _ = [a + b]_m := add_class m a b _ = [b + a]_m := by rw [h3] _ = [b]_m + [a]_m := (add_class m b a).symm done theorem Theorem_7_3_6_7 {m : Nat} (X : ZMod m) : X * [1]_m = X := by obtain (a : Int) (h1 : X = [a]_m) from cc_rep X rewrite [h1] have h2 : a * 1 = a := by ring show [a]_m * [1]_m = [a]_m from calc [a]_m * [1]_m _ = [a * 1]_m := mul_class m a 1 _ = [a]_m := by rw [h2] done theorem Exercise_7_2_6 (a b : Nat) : rel_prime a b ↔ ∃ (s t : Int), s * a + t * b = 1 := sorry lemma gcd_c2_inv {m a : Nat} (h1 : rel_prime m a) : [a]_m * [gcd_c2 m a]_m = [1]_m := by set s : Int := gcd_c1 m a have h2 : s * m + (gcd_c2 m a) * a = gcd m a := gcd_lin_comb a m define at h1 rewrite [h1, Nat.cast_one] at h2 --h2 : s * ↑m + gcd_c2 m a * ↑a = 1 rewrite [mul_class, cc_eq_iff_congr] define --Goal : ∃ (c : Int), ↑a * gcd_c2 m a - 1 = ↑m * c apply Exists.intro (-s) show a * (gcd_c2 m a) - 1 = m * (-s) from calc a * (gcd_c2 m a) - 1 _ = s * m + (gcd_c2 m a) * a + m * (-s) - 1 := by ring _ = 1 + m * (-s) - 1 := by rw [h2] _ = m * (-s) := by ring done theorem Theorem_7_3_7 (m a : Nat) : invertible [a]_m ↔ rel_prime m a := by apply Iff.intro · -- (→) assume h1 : invertible [a]_m define at h1 obtain (Y : ZMod m) (h2 : [a]_m * Y = [1]_m) from h1 obtain (b : Int) (h3 : Y = [b]_m) from cc_rep Y rewrite [h3, mul_class, cc_eq_iff_congr] at h2 define at h2 obtain (c : Int) (h4 : a * b - 1 = m * c) from h2 rewrite [Exercise_7_2_6] --Goal : ∃ (s t : Int), s * ↑m + t * ↑a = 1 apply Exists.intro (-c) apply Exists.intro b show (-c) * m + b * a = 1 from calc (-c) * m + b * a _ = (-c) * m + (a * b - 1) + 1 := by ring _ = (-c) * m + m * c + 1 := by rw [h4] _ = 1 := by ring done · -- (←) assume h1 : rel_prime m a define show ∃ (Y : ZMod m), [a]_m * Y = [1]_m from Exists.intro [gcd_c2 m a]_m (gcd_c2_inv h1) done done /- Section 7.4 -/ section Euler open Euler lemma num_rp_below_base {m : Nat} : num_rp_below m 0 = 0 := by rfl lemma num_rp_below_step_rp {m j : Nat} (h : rel_prime m j) : num_rp_below m (j + 1) = (num_rp_below m j) + 1 := by have h1 : num_rp_below m (j + 1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : gcd m j = 1 rewrite [if_pos h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j + 1 show num_rp_below m (j + 1) = num_rp_below m j + 1 from h1 done lemma num_rp_below_step_not_rp {m j : Nat} (h : ¬rel_prime m j) : num_rp_below m (j + 1) = num_rp_below m j := by have h1 : num_rp_below m (j +1) = if gcd m j = 1 then (num_rp_below m j) + 1 else num_rp_below m j := by rfl define at h --h : ¬gcd m j = 1 rewrite [if_neg h] at h1 --h1 : num_rp_below m (j + 1) = num_rp_below m j show num_rp_below m (j + 1) = num_rp_below m j from h1 done lemma phi_def (m : Nat) : phi m = num_rp_below m m := by rfl #eval phi 10 --Answer: 4 lemma prod_inv_iff_inv {m : Nat} {X : ZMod m} (h1 : invertible X) (Y : ZMod m) : invertible (X * Y) ↔ invertible Y := by apply Iff.intro · -- (→) assume h2 : invertible (X * Y) obtain (Z : ZMod m) (h3 : X * Y * Z = [1]_m) from h2 apply Exists.intro (X * Z) rewrite [←h3] --Goal : Y * (X * Z) = X * Y * Z ring --Note that ring can do algebra in ZMod m done · -- (←) assume h2 : invertible Y obtain (Xi : ZMod m) (h3 : X * Xi = [1]_m) from h1 obtain (Yi : ZMod m) (h4 : Y * Yi = [1]_m) from h2 apply Exists.intro (Xi * Yi) show (X * Y) * (Xi * Yi) = [1]_m from calc X * Y * (Xi * Yi) _ = (X * Xi) * (Y * Yi) := by ring _ = [1]_m * [1]_m := by rw [h3, h4] _ = [1]_m := Theorem_7_3_6_7 [1]_m done done lemma F_rp_def {m i : Nat} (h : rel_prime m i) : F m i = [i]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h --h : gcd m i = 1 rewrite [if_pos h] at h1 show F m i = [i]_m from h1 done lemma F_not_rp_def {m i : Nat} (h : ¬rel_prime m i) : F m i = [1]_m := by have h1 : F m i = if gcd m i = 1 then [i]_m else [1]_m := by rfl define at h rewrite [h1, if_neg h] rfl done lemma prod_seq_base {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 0 k f = [1]_m := by rfl lemma prod_seq_step {m : Nat} (n k : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) k f = prod_seq n k f * f (k + n) := by rfl lemma prod_seq_zero_step {m : Nat} (n : Nat) (f : Nat → ZMod m) : prod_seq (n + 1) 0 f = prod_seq n 0 f * f n := by rewrite [prod_seq_step, zero_add] rfl done lemma prod_one {m : Nat} (k : Nat) (f : Nat → ZMod m) : prod_seq 1 k f = f k := by rewrite [prod_seq_step, prod_seq_base, add_zero, mul_comm, Theorem_7_3_6_7] rfl done lemma G_def (m a i : Nat) : G m a i = (a * i) % m := by rfl lemma cc_G (m a i : Nat) : [G m a i]_m = [a]_m * [i]_m := calc [G m a i]_m _ = [(a * i) % m]_m := by rfl _ = [a * i]_m := (cc_eq_mod m (a * i)).symm _ = [a]_m * [i]_m := (mul_class m a i).symm lemma G_rp_iff {m a : Nat} (h1 : rel_prime m a) (i : Nat) : rel_prime m (G m a i) ↔ rel_prime m i := by have h2 : invertible [a]_m := (Theorem_7_3_7 m a).rtl h1 show rel_prime m (G m a i) ↔ rel_prime m i from calc rel_prime m (G m a i) _ ↔ invertible [G m a i]_m := (Theorem_7_3_7 m (G m a i)).symm _ ↔ invertible ([a]_m * [i]_m) := by rw [cc_G] _ ↔ invertible [i]_m := prod_inv_iff_inv h2 ([i]_m) _ ↔ rel_prime m i := Theorem_7_3_7 m i done lemma FG_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : rel_prime m i) : F m (G m a i) = [a]_m * F m i := by have h3 : rel_prime m (G m a i) := (G_rp_iff h1 i).rtl h2 show F m (G m a i) = [a]_m * F m i from calc F m (G m a i) _ = [G m a i]_m := F_rp_def h3 _ = [a]_m * [i]_m := cc_G m a i _ = [a]_m * F m i := by rw [F_rp_def h2] done lemma FG_not_rp {m a i : Nat} (h1 : rel_prime m a) (h2 : ¬rel_prime m i) : F m (G m a i) = [1]_m := by rewrite [←G_rp_iff h1 i] at h2 show F m (G m a i) = [1]_m from F_not_rp_def h2 done lemma FG_prod {m a : Nat} (h1 : rel_prime m a) : ∀ (k : Nat), prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) := by by_induc · -- Base Case show prod_seq 0 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) from calc prod_seq 0 0 ((F m) ∘ (G m a)) _ = [1]_m := prod_seq_base _ _ _ = [a]_m ^ 0 * [1]_m := by ring _ = [a]_m ^ (num_rp_below m 0) * prod_seq 0 0 (F m) := by rw [num_rp_below_base, prod_seq_base] done · -- Induction Step fix k : Nat assume ih : prod_seq k 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) by_cases h2 : rel_prime m k · -- Case 1. h2 : rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([a]_m * F m k) := by rw [FG_rp h1 h2] _ = [a]_m ^ ((num_rp_below m k) + 1) * ((prod_seq k 0 (F m)) * F m k) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_rp h2, prod_seq_zero_step] done · -- Case 2. h2 : ¬rel_prime m k show prod_seq (k + 1) 0 ((F m) ∘ (G m a)) = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) from calc prod_seq (k + 1) 0 ((F m) ∘ (G m a)) _ = prod_seq k 0 ((F m) ∘ (G m a)) * F m (G m a k) := prod_seq_zero_step _ _ _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * F m (G m a k) := by rw [ih] _ = [a]_m ^ (num_rp_below m k) * prod_seq k 0 (F m) * ([1]_m) := by rw [FG_not_rp h1 h2] _ = [a]_m ^ (num_rp_below m k) * (prod_seq k 0 (F m) * ([1]_m)) := by ring _ = [a]_m ^ (num_rp_below m (k + 1)) * prod_seq (k + 1) 0 (F m) := by rw [num_rp_below_step_not_rp h2, prod_seq_zero_step, F_not_rp_def h2] done done done lemma G_maps_below (m a : Nat) [NeZero m] : maps_below m (G m a) := by define --Goal : ∀ i < m, G m a i < m fix i : Nat assume h1 : i < m rewrite [G_def] --Goal : a * i % m < m show a * i % m < m from mod_nonzero_lt (a * i) (NeZero.ne m) done lemma left_inv_one_one_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g' (g i) = i) : one_one_below n g := sorry lemma right_inv_onto_below {n : Nat} {g g' : Nat → Nat} (h1 : ∀ i < n, g (g' i) = i) (h2 : maps_below n g') : onto_below n g := by define at h2; define fix k : Nat assume h3 : k < n apply Exists.intro (g' k) show g' k < n ∧ g (g' k) = k from And.intro (h2 k h3) (h1 k h3) done lemma cc_mul_inv_mod_eq_one {m a : Nat} [NeZero m] (h1 : rel_prime m a) : [a]_m * [inv_mod m a]_m = [1]_m := by have h2 : 0 ≤ (gcd_c2 m a) % m := mod_nonneg m (gcd_c2 m a) show [a]_m * [inv_mod m a]_m = [1]_m from calc [a]_m * [inv_mod m a]_m _ = [a]_m * [Int.toNat ((gcd_c2 m a) % m)]_m := by rfl _ = [a]_m * [(gcd_c2 m a) % m]_m := by rw [Int.toNat_of_nonneg h2] _ = [a]_m * [gcd_c2 m a]_m := by rw [←cc_eq_mod] _ = [1]_m := gcd_c2_inv h1 done lemma mul_mod_mod_eq_mul_mod (m a b : Nat) : (a * (b % m)) % m = (a * b) % m := calc a * (b % m) % m = a % m * (b % m % m) % m := Nat.mul_mod _ _ _ _ = a % m * (b % m) % m := by rw [Nat.mod_mod] _ = a * b % m := (Nat.mul_mod _ _ _).symm lemma mod_mul_mod_eq_mul_mod (m a b : Nat) : (a % m * b) % m = (a * b) % m := by rewrite [mul_comm, mul_mod_mod_eq_mul_mod, mul_comm] rfl done theorem congr_iff_mod_eq_Nat (m a b : Nat) [NeZero m] : ↑a ≡ ↑b (MOD m) ↔ a % m = b % m := sorry
lemma mul_inv_mod_cancel {m a i : Nat} [NeZero m] (h1 : rel_prime m a) (h2 : i < m) : a * (inv_mod m a) * i % m = i
HTPI.mul_inv_mod_cancel
null
null
htpi/HTPILib/Chap7.lean
{ "lineInFile": 1309, "tokenPositionInFile": 42213, "theoremPositionInFile": 123 }
{ "inFilePremises": true, "repositoryPremises": true }
{ "hasProof": true, "proof": ":= by\n have h3 : [a]_m * [inv_mod m a]_m = [1]_m := cc_mul_inv_mod_eq_one h1\n rewrite [mul_class, cc_eq_iff_congr, ←Nat.cast_mul, ←Nat.cast_one, congr_iff_mod_eq_Nat] at h3\n show a * inv_mod m a * i % m = i from\n calc a * (inv_mod m a) * i % m\n _ = (a * inv_mod m a) % m * i % m := by rw [mod_mul_mod_eq_mul_mod]\n _ = 1 % m * i % m := by rw [h3]\n _ = 1 * i % m := by rw [mod_mul_mod_eq_mul_mod]\n _ = i % m := by rw [one_mul]\n _ = i := Nat.mod_eq_of_lt h2\n done", "proofType": "tactic", "proofLengthLines": 10, "proofLengthTokens": 492 }
htpi